Skip to main content
Log in

Theoretical investigation on the structures, electronic and magnetic properties of new 2D/1D composite nanosystems by adsorbing superhalogen MnCl3 on the BN monolayer/nanoribbons

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Hexagonal boron nitride (h-BN), an inorganic analogue of graphene, possesses the remarkable physical and chemical properties and can be viewed as the powerful building block to construct novel composite nanomaterials. In this study, based on the first-principles calculations, we design a new class of hybrid nanosystems by depositing superhalogen MnCl3 on the surface of low-dimensional BN monolayer or nanoribbons (BNML/BNNRs). The large adsorption energies indicate that the MnCl3 can be stably adsorbed on the surface of the BN materials. Regardless of dimension, chirality, ribbon width as well as the adsorption site and coverage of MnCl3, adsorbing MnCl3 can endow these hybrid BN nanomaterials with a large magnetic moment and significantly reduce the robust wide band gap of BN materials to the range of 0.098–0.948 eV. Overall, these new MnCl3–BN composite nanostructures can display the large magnetism and an appropriate band gap, which is very promising to make them an application in the field of multifunctional nanodevices and magnetic materials in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Katsnelson MI, Novoselov KS, Geim AK (2006) Nat Phys 2:620

    Article  CAS  Google Scholar 

  2. Katsnelson MI, Novoselov KS (2007) Solid State Commun 143:3

    Article  CAS  Google Scholar 

  3. Zhang YB, Tan Y-W, Stormer HL, Kim P (2005) Nature 438:201

    CAS  PubMed  Google Scholar 

  4. Lee CG, Wei XD, Kysar JW, Hone J (2008) Science 321:385

    Article  CAS  Google Scholar 

  5. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, Heer WAD (2006) Science 312:1191

    Article  CAS  Google Scholar 

  6. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Science 315:1379

    Article  CAS  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  8. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498

    Article  CAS  Google Scholar 

  9. Sordan R, Traversi F, Russo V (2009) Appl Phys Lett 94:073305

    Article  Google Scholar 

  10. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  11. Li YF, Zhou Z, Shen PW, Chen ZF (2009) ACS Nano 3:1952

    Article  CAS  Google Scholar 

  12. Yang J, Han X, Bian B (2018) Theor Chem Acc 137:178

    Article  Google Scholar 

  13. Wu M, Wu X, Zeng XC (2010) J Phys Chem C 114:3937

    Article  CAS  Google Scholar 

  14. Németh K (2018) Theor Chem Acc 137:157

    Article  Google Scholar 

  15. Majidi R (2017) Theor Chem Acc 136:109

    Article  Google Scholar 

  16. Zhang HM, Lin HP, Sun KW, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong DY, Li YY, Müllen K, Fuchs H, Chi LF (2015) J Am Chem Soc 137:4022

    Article  CAS  Google Scholar 

  17. Krasheninnikov AV, Nieminen RM (2011) Theor Chem Acc 129:625

    Article  CAS  Google Scholar 

  18. Guan J, Chen W, Li YF, Yu GT, Shi ZM, Huang XR, Sun CC, Chen ZF (2013) Adv Funct Mater 23:1507

    Article  CAS  Google Scholar 

  19. Otero N, Karamanis P, Pouchan C (2018) Theor Chem Acc 137:16

    Article  Google Scholar 

  20. Nemnes GA, Visan C, Manolescu A (2017) J Mater Chem C 5:4435

    Article  CAS  Google Scholar 

  21. Chen W, Li YF, Yu GT, Zhou Z, Chen ZF (2009) J Chem Theory Comput 5:3088

    Article  CAS  Google Scholar 

  22. Lou P (2011) Phys Chem Chem Phys 13:17194

    Article  CAS  Google Scholar 

  23. Guan J, Chen W, Zhao XJ, Yu GT, Huang XR, Sun CC (2012) J Mater Chem 22:24166

    Article  CAS  Google Scholar 

  24. Tang Q, Zhou Z, Shen PW, Chen ZF (2013) Chem Phys Chem 14:1787

    Article  CAS  Google Scholar 

  25. Guan J, Yu GT, Ding XL, Chen W, Shi ZM, Huang XR, Sun CC (2013) Chem Phys Chem 14:2841

    Article  CAS  Google Scholar 

  26. Chen W, Zhang H, Ding XL, Yu GT, Liu D, Huang XR (2014) J Mater Chem C 2:7836

    Article  CAS  Google Scholar 

  27. Li H, Chen W, Sun YH, Huang XR, Yu GT (2015) Phys Chem Chem Phys 17:24038

    Article  CAS  Google Scholar 

  28. Sun YH, Yu GT, Liu JW, Shen XP, Huang XR, Chen W (2016) Phys Chem Chem Phys 18:1326

    Article  CAS  Google Scholar 

  29. Li H, Chen W, Shen XP, Liu JW, Huang XR, Yu GT (2017) Phys Chem Chem Phys 19:3694

    Article  CAS  Google Scholar 

  30. Ding XL, Yu GT, Huang XR, Chen W (2013) Phys Chem Chem Phys 15:18039

    Article  CAS  Google Scholar 

  31. Shen XP, Yu GT, Zhang ZS, Liu JW, Li H, Huang XR, Chen W (2017) J Mater Chem C 5:2022

    Article  CAS  Google Scholar 

  32. Zhi CY, Bando Y, Tang CC, Kuwahara H, Golberg D (2009) Adv Mater 21:2889

    Article  CAS  Google Scholar 

  33. Zeng HB, Zhi CY, Zhang ZH, Wei XL, Wang XB, Guo WL, Bando Y, Golberg D (2010) Nano Lett 10:5049

    Article  CAS  Google Scholar 

  34. Li C, Bando Y, Zhi C, Huang Y, Golberg D (2009) Nanotechnology 20:385707

    Article  Google Scholar 

  35. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang CC, Zhi CY (2010) ACS Nano 4:2979

    Article  CAS  Google Scholar 

  36. Pakdel A, Zhi CY, Bando Y, Nakayama T, Golberg D (2011) ACS Nano 5:6507

    Article  CAS  Google Scholar 

  37. Li LH, Cevenka J, Watanabe K, Taniguchi T, Chen Y (2014) ACS Nano 8:1457

    Article  CAS  Google Scholar 

  38. Li LH, Xing T, Chen Y, Jones R (2014) Adv Mater Interfaces 1:1300132

    Article  Google Scholar 

  39. Lee C, Li QY, Kalb W, Liu XZ, Berger H, Carpick RW, Hone J (2010) Science 328:76

    Article  CAS  Google Scholar 

  40. Husain E, Narayanan TN, Taha-Tijerina JJ, Vinod S, Vajtai R, Ajayan PM (2013) ACS Appl Mater Interfaces 5:4129

    Article  CAS  Google Scholar 

  41. Zhou Z, Zhao JJ, Chen ZF, Gao XP, Lu JP, Schleyer PV, Yang CK (2006) J Phys Chem B 110:2529

    Article  CAS  Google Scholar 

  42. Zhong RL, Xu HL, Muhammad S, Zhang J, Su ZM (2012) J Mater Chem 22:2196

    Article  CAS  Google Scholar 

  43. Park CH, Louie SG (2008) Nano Lett 8:2200

    Article  CAS  Google Scholar 

  44. Chen W, Li YF, Yu GT, Li CZ, Zhang SB, Zhou Z, Chen ZF (2010) J Am Chem Soc 132:1699

    Article  CAS  Google Scholar 

  45. Wang Y, Li YF, Chen ZF (2014) J Phys Chem C 118:25051

    Article  CAS  Google Scholar 

  46. Tang Q, Zhou Z, Chen ZF (2011) J Phys Chem C 115:18531

    Article  CAS  Google Scholar 

  47. Shibuta M, Ohta T, Nakaya M, Tsunoyama H, Eguchi T, Nakajima A (2015) J Am Chem Soc 137:14015

    Article  CAS  Google Scholar 

  48. Reveles JU, Clayborne PA, Reber AC, Khanna SN, Pradhan K, Sen P, Pederson MR (2009) Nat Chem 1:310

    Article  CAS  Google Scholar 

  49. Tu CY, Yu GT, Yang GH, Zhao XG, Chen W, Li SC, Huang XR (2014) Phys Chem Chem Phys 16:1597

    Article  CAS  Google Scholar 

  50. Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Komuro T, Tobita H (2010) Nat Chem 2:678

    Article  CAS  Google Scholar 

  51. Reber AC, Khanna SN, Castleman AW (2007) J Am Chem Soc 129:10189

    Article  CAS  Google Scholar 

  52. Wang SJ, Li Y, Wang YF, Wu D, Li ZR (2013) Phys Chem Chem Phys 15:12903

    Article  CAS  Google Scholar 

  53. Jena P (2015) J Phys Chem Lett 6:1119

    Article  CAS  Google Scholar 

  54. Wu MM, Wang H, Ko YJ, Wang Q, Sun Q, Kiran B, Kandalam AK, Bowen KH, Jena P (2011) Angew Chem Int Ed 50:2568

    Article  CAS  Google Scholar 

  55. Li YW, Zhang SH, Wang Q, Jena P (2013) J Chem Phys 138:054309

    Article  Google Scholar 

  56. Zhao HM, Zhou J, Fang H, Jena P (2016) ChemPhys Chem 17:184

    Article  CAS  Google Scholar 

  57. Li H, Yu GT, Zhang ZS, Ma YF, Huang XR, Chen W (2018) RSC Adv 8:13167

    Article  CAS  Google Scholar 

  58. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  59. Kresse G, Hafner J (1993) Phys Rev B Condens Matter Mater Phys 47:558

    Article  CAS  Google Scholar 

  60. Kresse G, Hafner J (1994) Phys Rev B Condens Matter Mater Phys 49:14251

    Article  CAS  Google Scholar 

  61. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  62. Kresse G, Furthmüller J (1996) Phys Rev B Condens Matter Mater Phys 54:11169

    Article  CAS  Google Scholar 

  63. Zhang ZH, Guo WL, Yakobson BI (2013) Nanoscale 5:6381

    Article  CAS  Google Scholar 

  64. Yin LC, Cheng HM, Saito R (2010) Phys Rev B 81:153407

    Article  Google Scholar 

  65. Chen J, Zhang LW, Zhang L, Zheng XH, Xiao LT, Jia ST, Wang J (2018) Phys Chem Chem Phys 20:26744

    Article  CAS  Google Scholar 

  66. Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R (2016) J Phys Chem C 120:25256

    Article  CAS  Google Scholar 

  67. Liu G, Luo WW, Wang X, Lei XL, Xu B, Ouyang CY, Liu SB (2018) J Mater Chem C 6:5937

    Article  CAS  Google Scholar 

  68. Hu AM, Wang LL, Xiao WZ, Xiao G, Rong QY (2015) Comput Mater Sci 107:72

    Article  CAS  Google Scholar 

  69. Jing Y, Tan X, Zhou Z, Shen PW (2014) J Mater Chem A 2:16892

    Article  CAS  Google Scholar 

  70. Blöchl PE (1994) Phys Rev B Condens Matter Mater Phys 50:17953

    Article  Google Scholar 

  71. Kresse G, Joubert D (1999) Phys Rev B Condens Matter Mater Phys 59:1758

    Article  CAS  Google Scholar 

  72. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  73. Wu X, Vargas MC, Nayak S, Lotrich V, Scoles G (2001) J Chem Phys 115:8748

    Article  CAS  Google Scholar 

  74. Topsakal M, Aktürk E, Ciraci S (2009) Phys Rev B 79:115442

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in China by NSFC (21673093, 21673094 and 21573090), Science and Technology Research Program of Education Department of Jilin Province (JJKH20190121KJ and JJKH20170780KJ), and Jilin Province Science and Technology Development Plan (20170101175JC). We acknowledge the Computing Center of Jilin Province and the High Performance Computing Center (HPCC) of Jilin University for supercomputer time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangtao Yu or Wei Chen.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26049 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Yu, G., Huang, X. et al. Theoretical investigation on the structures, electronic and magnetic properties of new 2D/1D composite nanosystems by adsorbing superhalogen MnCl3 on the BN monolayer/nanoribbons. Theor Chem Acc 138, 91 (2019). https://doi.org/10.1007/s00214-019-2473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2473-7

Keywords

Navigation