Skip to main content
Log in

Theoretical assessment of donor–acceptor complexes [X(PPh3)2 → AlH2]+ (X = C–Pb): structures and bonding

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Quantum chemical investigations at the BP86/def2-SVP, BP86/def2-TZVPP and BP86/TZ2P+ levels of theory have been done for the series of AlH2+ complexes that carry carbodiphosphorane and analogues called tetrylones [X(PPh3)2–AlH2]+ (Al-XPPh) (X = C–Pb) using charge and partitioning methods. The most stable structures of Al-XPPh have been found for carbone CPPh as a mildly side-on style in carbone complex Al-CPPh, while the heavier tetrylone adducts Al-SiPPh−Al-PbPPh have significantly different side-on fashions SiPPh−PbPPh, which exhibit the more acute bending angles in tilted forms linked to AlH2+ fragment. Bond dissociation energies (BDEs), De (kcal/mol), slightly decrease from the strongest bonded carbone, Al-CPPh, to the weaker bonded heavier homologues. The bulky tetrylone ligands XPPh have significantly influenced to the Al-X bond strength in complexes Al-XPPh when calculating BDEs with dispersion interaction. The NBO analysis revealed that the [X(PPh3)2 → AlH2]+ donation comes mainly from the σ- and π-contributions of the ligands. The EDA–NOCV calculations showed that the bond sturdiness of the Al–X bond results from the decrease in [X(PPh3)2 → AlH2]+ donation and electrostatic attraction. The EDA–NOCV data also indicated that AlH2+–tetrylone complexes exhibit not only (PPh3)2X → AlH2+ strong σ-donors and weak π-donors but also (PPh3)2X ← AlH2+ weak π-back donation as ππ electrons shared in complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3

Similar content being viewed by others

References

  1. Petz W, Öxler F, Neumüller B, Tonner R, Frenking G (2009) Carbodiphosphorane C(PPh3)2 as a single and twofold lewis base with boranes: synthesis, crystal structures and theoretical studies on [H3B{C(PPh3)2}] and [{(μ-H)H4B2}{C(PPh3)2}]+. Eur J Inorg Chem 2009:4507–4517

    Article  Google Scholar 

  2. Petz W, Frenking G (2010) Carbodiphosphoranes and related ligands. Top Organomet Chem 30:49–92

    Article  CAS  Google Scholar 

  3. Tonner R, Frenking G (2008) Divalent carbon(0) chemistry, part 1: parent compounds. Chem Eur J 14:3260–3272

    Article  CAS  Google Scholar 

  4. Tonner R, Frenking G (2008) Divalent carbon(0) chemistry, part 2: protonation and complexes with main group and transition metal lewis acids. Chem Eur J 14:3273–3289

    Article  CAS  Google Scholar 

  5. Frenking G, Tonner R (2009) Divalent carbon(0) compounds. Pure Appl Chem 81:597–614

    Article  CAS  Google Scholar 

  6. Ramirez F, Desai NB, Hansen B, McKelvie N (1961) Hexaphenylcarbodiphosphorane, (C6H5)3PCP(C6H5)3. J Am Chem Soc 83:3539–3540

    Article  CAS  Google Scholar 

  7. Hardy GE, Zink JI, Kaska WC, Baldwin JC (1978) Structure of triboluminescence of polymorphs of hexaphenylcarbodiphosphorane. J Am Chem Soc 100:8001–8002

    Article  CAS  Google Scholar 

  8. Klein S, Tonner R, Frenking G (2010) Carbodicarbenes and related divalent carbon(0) compounds. Chem Eur J 16:10160–10170

    Article  CAS  Google Scholar 

  9. Takagi N, Shimizu T, Frenking G (2009) Divalent E(0) Compounds (E = Si–Sn). Chem Eur J 15:8593–8604

    Article  CAS  Google Scholar 

  10. Takagi N, Frenking G (2011) Divalent Pb(0) compounds. Theoret Chem Acc 129:615–623

    Article  CAS  Google Scholar 

  11. Frenking G, Hermann M, Andrada DM, Holzmann N (2016) Donor–acceptor bonding in novel low-coordinated compounds of boron and Group-14 atoms C–Sn. Chem Soc Rev 45:1129–1144

    Article  CAS  Google Scholar 

  12. Frenking G, Tonner R, Klein S, Takagi N, Shimizu T, Krapp A, Pandeyc KK, Parameswaran P (2014) New bonding modes of carbon and heavier Group 14 atoms Si–Pb. Chem Soc Rev 43:5106–5139

    Article  CAS  Google Scholar 

  13. Takagi N, Shimizu T, Frenking G (2009) Divalent silicon(0) compounds. Chem Eur J 15:3448–3456

    Article  CAS  Google Scholar 

  14. Zhao L, Hermann M, Holzmann N, Frenking G (2017) Dative bonding in main group compounds. Coord Chem Rev 344:163–204

    Article  CAS  Google Scholar 

  15. Mondal KC, Roesky HW, Schwarzer MC, Frenking G, Niepötter B, Wolf H, Herbst-Irmer R, Stalke D (2013) A stable singlet biradicaloid siladicarbene: (L:)2Si. Angew Chem Int Ed 52:2963–2967

    Article  CAS  Google Scholar 

  16. Xiong Y, Yao S, Tan G, Inoue S, Driess M (2013) A cyclic germadicarbene (“Germylone”) from germyliumylidene. J Am Chem Soc 135:5004–5007

    Article  CAS  Google Scholar 

  17. Xiong Y, Yao S, Inoue S, Epping JD, Driess M (2013) A cyclic silylone (“Siladicarbene”) with an electron-rich silicon(0) atom. Angew Chem Int Ed 52:7147–7150

    Article  CAS  Google Scholar 

  18. Celik MA, Frenking G, Neumüller B, Petz W (2013) Exploiting the twofold donor ability of carbodiphosphoranes: theoretical studies of [(PPh3)2C → EH2]q(Eq = Be, B+, C2+, N3+, O4+) and synthesis of the dication [(Ph3P)2C = CH2]2+. Chem Plus Chem 78:1024–1032

    CAS  Google Scholar 

  19. Petz W, Neumüller B, Klein S, Frenking G (2011) Syntheses and crystal structures of [Hg{C(PPh3)2}2][Hg2I6] and [Cu{C(PPh3)2}2]I and comparative theoretical study of carbene complexes [M(NHC)2] with carbone complexes [M{C(PH3)2}2] (M = Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+). Organometallics 30:3330–3339

    Article  CAS  Google Scholar 

  20. Vicente J, Singhal AR, Jones PG (2002) New ylide, alkynyl, and mixed alkynyl/ylide − gold(I) complexes. Organometallics 21:5887–5900

    Article  CAS  Google Scholar 

  21. Reitsamer C, Schuh W, Kopacka H, Wurst K, Peringer P (2009) Synthesis and structure of the first heterodinuclear PCP − pincer − CDP complex with a Pd − Au d8 − d10 pseudo-closed-shell interaction. Organometallics 28:6617–6620

    Article  CAS  Google Scholar 

  22. Reitsamer C, Schuh W, Kopacka H, Wurst K, Ellmerer E, Peringer P (2011) The first carbodiphosphorane complex with two palladium centers attached to the CDP carbon: assembly of a single-stranded di-Pd helicate by the PCP pincer ligand C(dppm)2. Organometallics 30:4220–4223

    Article  CAS  Google Scholar 

  23. Petz W, Dehnicke K, Holzmann N, Frenking G, Neumüller B (2011) The reaction of BeCl2 with carbodiphosphorane C(PPh3)2: experimental and theoretical studies. Z Anorg Allg Chem 637:1702–1710

    Article  CAS  Google Scholar 

  24. Petz W, Weller F, Uddin J, Frenking G (1999) Reaction of carbodiphosphorane Ph3PCPPh3 with Ni(CO)4. experimental and theoretical study of the structures and properties of (CO)3NiC(PPh3)2 and (CO)2NiC(PPh3)2. Organometallics 18:619–626

    Article  CAS  Google Scholar 

  25. Sundermeyer J, Weber K, Peters K, von Schnering HG (1994) Modeling surface reactivity of metal oxides: synthesis and structure of an ionic organorhenyl perrhenate formed by ligand-induced dissociation of covalent Re2O7. Organometallics 13:2560–2562

    Article  CAS  Google Scholar 

  26. Kinjo R, Donnadieu B, Celik MA, Frenking G, Bertrand G (2011) Synthesis and characterization of a neutral tricoordinate organoboron isoelectronic with amines. Science 333:610–613

    Article  CAS  Google Scholar 

  27. Celik MA, Sure R, Klein S, Kinjo R, Bertrand G, Frenking G (2012) Borylene complexes (BH)L2 and nitrogen cation complexes (N+)L2: isoelectronic homologues of carbones CL2. Chem Eur J 18:5676–5692

    Article  CAS  Google Scholar 

  28. Inés B, Patil M, Carreras J, Goddard R, Thiel W, Alcarazo M (2011) Synthesis, structure, and reactivity of a dihydrido borenium cation. Angew Chem Int Ed 50:8400–8403

    Article  Google Scholar 

  29. Nguyen TAN, Frenking G (2012) Transition-metal complexes of tetrylones [(CO)5W–E(PPh3)2] and tetrylenes [(CO)5W–NHE] (E = C–Pb): a theoretical study. Chem Eur J 18:12733–12748

    Article  CAS  Google Scholar 

  30. Nguyen TAN, Frenking G (2013) Structure and bonding of tetrylone complexes [(CO)4W{E(PPh3)2}] (E = C–Pb). Molec Phys 111:2640–2646

    Article  CAS  Google Scholar 

  31. Nguyen TAN, Tran DS, Huynh TPL, Le TH, Duong TQ, Nguyen TT, Vo TC, Van TP, Dang TH (2017) Can tetrylone act in a similar fashion to tetrylene in Ni(CO)2 complexes? a theoretical study based on a comparison using DFT calculations. Z Anorg Allg Chem 643:826–838

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09. Gaussian Inc., Wallingford, CT

    Google Scholar 

  33. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  34. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  35. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824

    Article  CAS  Google Scholar 

  36. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. Chem Phys 97:2571–2577

    Google Scholar 

  37. Metz B, Stoll H, Dolg M (2000) Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: application to PbH and PbO. J Chem Phys 113:2563–2569

    Article  CAS  Google Scholar 

  38. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  39. Weigend F (2005) Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  40. Neese F (2003) An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J Comput Chem 24:1740–1747

    Article  CAS  Google Scholar 

  41. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  42. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688

    Article  CAS  Google Scholar 

  43. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  44. Morokuma K (1971) Molecular orbital studies of hydrogen bonds. III. C=O···H–O hydrogen bond in H2CO···H2O and H2CO···2H2O. J Chem Phys 55:1236–1244

    Article  CAS  Google Scholar 

  45. Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. Theor Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  46. Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5:962–975

    Article  CAS  Google Scholar 

  47. Mitoraj M, Michalak A (2007) Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J Mol Model 13:347–355

    Article  CAS  Google Scholar 

  48. Mitoraj M, Michalak A (2007) Donor–acceptor properties of ligands from the natural orbitals for chemical valence. Organometallics 26:6576–6580

    Article  CAS  Google Scholar 

  49. Gte Velde, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  50. Snijders JG, Vernooijs P, Baerends EJ (1981) Roothaan–Hartree–Fock–Slater atomic wave functions: single-zeta, double-zeta, and extended Slater-type basis sets for 87Fr–103Lr. At Data Nucl Data Tables 26:483–509

    Article  CAS  Google Scholar 

  51. Krijn J, Baerends EJ (1984) Fit functions in the HFS-method. Internal Report, Vrije Universiteit Amsterdam, Amsterdam

  52. Evan Lenthe, Ehlers A, Baerends EJ (1999) Geometry optimizations in the zero order regular approximation for relativistic effects. J Chem Phys 110:8943–8953

    Article  Google Scholar 

  53. Kaska WC, Mitchell DK, Reichelderfer RF (1973) Transition metal complexes of hexaphenylcarbodiphosphorane. J Organomet Chem 47:391–402

    Article  CAS  Google Scholar 

  54. Kaska WC, Mitchell DK, Reichelderfer RF, Korte WD (1974) Interaction of phosphorus ylides with transition metal carbonyl compounds. Triphenylphosphinemethylene and bis(triphenylphosphine)carbon. Comparative chemistry. J Am Chem Soc 96:2847–2854

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Nguyen Thi Ai Nhung thanks Prof. Dr. Gernot Frenking for allowing the continuous use of her own resources within Frenking’s group. The programs used in the studies were run via the Erwin/Annemarie clusters operated by Reuti (Thomas Reuter) at the Philipps-Universität Marburg, Germany. This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 104.06-2017.303 (Nguyen Thi Ai Nhung).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Ai Nhung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nhung, N.T.A., Loan, H.T.P., Son, P.T. et al. Theoretical assessment of donor–acceptor complexes [X(PPh3)2 → AlH2]+ (X = C–Pb): structures and bonding. Theor Chem Acc 138, 67 (2019). https://doi.org/10.1007/s00214-019-2456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2456-8

Keywords

Navigation