Skip to main content
Log in

C → N coordination bonds in (CCC) → N+  (L) complexes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Quantum chemical calculations were performed on a series of novel divalent NI compounds, CCC → N+ ← CO (1), CCC → N+ ← N2 (2), CCC → N+ ← PPh3 (3), CCC → N+ ← C(NH2)2 (4), CCC → N+ ← NHCMe (5) CCC → N+ ← N-methyl-4-pyridylidene (6) and CCC → N+ ← Cyclopropenylidene (7), where CCC is a carbocyclic carbene (cyclohexa-2,5-diene-4-(diaminomethynyl)-1-ylidene). Complete optimization of 3D structures indicates that the chosen structures are the global minima on their respective potential energy surfaces (tautomeric alternatives are much less stable). The CCC → N+ coordination bond length is in the range of 1.353–1.399 Å, supporting the C → N coordination bond character. This is also supplemented by very low CCC → N bond rotational barriers (> 8 kcal/mol). The CCC → N ← L angles are in the range of 118°–131°, suggesting that there is no heteroallene-type character at the central nitrogen atom. Electron localization function, lone pair occupancy calculations and partial charge analysis indicate the presence of excess electron density at the N+ centre. The nucleophilicity of the designed compounds was further measured by calculating the proton affinity and complexation energies with various Lewis acids like BH3, AlCl3 and AuCl at the N+ centre. All these studies suggest the presence of divalent NI character in the designed compounds 17.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Öfele K, Tosh E, Taubmann C, Herrmann WA (2009) Chem Rev 109(8):3408–3444

    Article  Google Scholar 

  2. Bharatam PV, Patel DS, Iqbal P (2005) J Med Chem 48(24):7615–7622

    Article  CAS  Google Scholar 

  3. Patel DS, Bharatam PV (2009) Chem Commun (9):1064–1066

  4. Mehdi A, Adane L, Patel DS, Bharatam PV (2010) J Comput Chem 31(6):1259–1267

    CAS  Google Scholar 

  5. Patel DS, Bharatam PV (2011) J Phys Chem A 115(26):7645–7655

    Article  CAS  Google Scholar 

  6. Bhatia S, Bagul C, Kasetti Y, Patel DS, Bharatam PV (2012) J Phys Chem A 116(36):9071–9079

    Article  CAS  Google Scholar 

  7. Bhatia S, Malkhede YJ, Bharatam PV (2013) J Comput Chem 34(18):1577–1588

    Article  CAS  Google Scholar 

  8. Bhatia S, Bharatam PV (2014) J Org Chem 79(11):4852–4862

    Article  CAS  Google Scholar 

  9. Bharatam PV, Arfeen M, Patel N, Jain P, Bhatia S, Chakraborti AK, Khullar S, Gupta V, Mandal SK (2016) Chem Eur J 22:1088–1096

    Article  CAS  Google Scholar 

  10. Kathuria D, Arfeen M, Bankar AA, Bharatam PV (2016) J Chem Sci 128:1607–1614

    Article  CAS  Google Scholar 

  11. Frenking G, Tonner F (2014) The Chemical Bond—Chemical Bonding Across the Periodic Table. Wiley-VCH, Weinheim

    Google Scholar 

  12. Kinjo R, Donnadieu B, Celik MA, Frenking G, Bertrand G (2011) Science 333(6042):610–613

    Article  CAS  Google Scholar 

  13. Wang Y, Quillian B, Wei P, Wannere CS, Xie Y, King RB, Schaefer HF, Schleyer PVR, Robinson GH (2007) J Am Chem Soc 129(41):12412–12413

    Article  CAS  Google Scholar 

  14. Wang Y, Quillian B, Wei P, Xie Y, Wannere CS, King RB, Schaefer HF, Schleyer PVR, Robinson GH (2008) J Am Chem Soc 130(11):3298–3299

    Article  CAS  Google Scholar 

  15. Tonner R, Oxler F, Neumuller B, Petz W, Frenking G (2006) Angew Chem Int Ed 45(47):8038–8042

    Article  CAS  Google Scholar 

  16. Tonner R, Frenking G (2007) Angew Chem Int Ed 46(45):8695–8698

    Article  CAS  Google Scholar 

  17. Dyker CA, Lavallo V, Donnadieu B, Bertrand G (2008) Angew Chem Int Ed 47(17):3206–3209

    Article  CAS  Google Scholar 

  18. Kaufhold O, Hahn FE (2008) Angew Chem Int Ed 47(22):4057–4061

    Article  CAS  Google Scholar 

  19. Tonner R, Frenking G (2008) Chem Eur J 14(11):3273–3289

    Article  CAS  Google Scholar 

  20. Alcarazo M, Lehmann CW, Anoop A, Thiel W, Fürstner A (2009) Nat Chem 1(4):295–301

    Article  CAS  Google Scholar 

  21. Dyker CA, Bertrand G (2009) Nat Chem 1(4):265–266

    Article  CAS  Google Scholar 

  22. Tonner R, Frenking G (2009) Pure Appl Chem 81:597–614

    Google Scholar 

  23. Klein S, Tonner R, Frenking G (2010) Chem Eur J 16(33):10160–10170

    Article  CAS  Google Scholar 

  24. Esterhuysen C, Frenking G (2011) Chem Eur J 17(36):9944–9956

    Article  CAS  Google Scholar 

  25. Frenking G, Tonner R (2011) Wiley Interdiscip Rev: Comput Mol Sci 1(6):869–878

    CAS  Google Scholar 

  26. Barua SR, Allen WD, Kraka E, Jerabek P, Sure R, Frenking G (2013) Chem Eur J 19(47):15941–15954

    Article  CAS  Google Scholar 

  27. Mondal KC, Roesky HW, Schwarzer MC, Frenking G, Niepötter B, Wolf H, Herbst-Irmer R, Stalke D (2013) Angew Chem Int Ed 52(10):2963–2967

    Article  CAS  Google Scholar 

  28. Xiong Y, Yao S, Inoue S, Epping JD, Driess M (2013) Angew Chem Int Ed 52(28):7147–7150

    Article  CAS  Google Scholar 

  29. Wang Y, Xie Y, Wei P, King RB, Schaefer HF, Schleyer PVR, Robinson GH (2008) Science 321(5892):1069–1071

    Article  CAS  Google Scholar 

  30. Li Y, Mondal KC, Roesky HW, Zhu H, Stollberg P, Herbst-Irmer R, Stalke D, Andrada DM (2013) J Am Chem Soc 135(33):12422–12428

    Article  CAS  Google Scholar 

  31. Xiong Y, Yao S, Tan G, Inoue S, Driess M (2013) J Am Chem Soc 135(13):5004–5007

    Article  CAS  Google Scholar 

  32. Sidiropoulos A, Jones C, Stasch A, Klein S, Frenking G (2009) Angew Chem Int Ed 48(51):9701–9704

    Article  CAS  Google Scholar 

  33. Jones C, Sidiropoulos A, Holzmann N, Frenking G, Stasch A (2012) Chem Commun 48(79):9855–9857

    Article  CAS  Google Scholar 

  34. Bernhardi II, Drews T, Seppelt K (1999) Angew Chem Int Ed 38(15):2232–2233

    Article  CAS  Google Scholar 

  35. Kunetskiy RA, Císařová I, Šaman D, Lyapkalo IM (2009) Chem Eur J 15(37):9477–9485

    Article  CAS  Google Scholar 

  36. Ma T, Fu X, Kee CW, Zong L, Pan Y, Huang KW, Tan CH (2011) J Am Chem Soc 133(9):2828–2831

    Article  CAS  Google Scholar 

  37. Celik MA, Sure R, Klein S, Kinjo R, Bertrand G, Frenking G (2012) Chem Eur J 18(18):5676–5692

    Article  CAS  Google Scholar 

  38. Kozma Á, Gopakumar G, Farès C, Thiel W, Alcarazo M (2013) Chem Eur J 19(11):3542–3546

    Article  CAS  Google Scholar 

  39. Mirabdolbaghi R, Dudding T, Stamatatos T (2014) Org Lett 16(11):2790–2793

    Article  CAS  Google Scholar 

  40. Mirabdolbaghi R, Dudding T (2015) Org Lett 17(8):1930–1933

    Article  CAS  Google Scholar 

  41. Reinmuth M, Neuhäuser C, Walter P, Enders M, Kaifer E, Himmel H-J (2011) Eur J Inorg Chem 1:83–90

    Article  Google Scholar 

  42. Wilson DJ, Couchman SA, Dutton JL (2012) Inorg Chem 51(14):7657–7668

    Article  CAS  Google Scholar 

  43. Holzmann N, Dange D, Jones C, Frenking G (2013) Angew Chem Int Ed 52(10):3004–3008

    Article  CAS  Google Scholar 

  44. Schmidpeter A, Gebler W, Zwaschka F, Sheldrick WS (1980) Angew Chem Int Ed 19(9):722–723

    Article  Google Scholar 

  45. Cowley AH, Kemp RA (1985) Chem Rev 85(5):367–382

    Article  CAS  Google Scholar 

  46. Ellis BD, Dyker CA, Decken A, Macdonald CL (2005) Chem Commun (15):1965–1967

  47. Wang Y, Xie Y, Wei P, King RB, Schaefer HF, Schleyer PVR, Robinson GH (2008) J Am Chem Soc 130(45):14970–14971

    Article  CAS  Google Scholar 

  48. Ellis BD, Macdonald CL (2004) Inorg Chem 43(19):5981–5986

    Article  CAS  Google Scholar 

  49. Abraham MY, Wang Y, Xie Y, Gilliard RJ Jr, Wei P, Vaccaro BJ, Johnson MK, Schaefer HF III, Schleyer PVR, Robinson GH (2013) J Am Chem Soc 135(7):2486–2488

    Article  CAS  Google Scholar 

  50. Abraham MY, Wang Y, Xie Y, Wei P, Schaefer HF, Schleyer PVR, Robinson GH (2010) Chem Eur J 16(2):432–435

    Article  CAS  Google Scholar 

  51. Vij A, Wilson WW, Vij V, Tham FS, Sheehy JA, Christe KO (2001) J Am Chem Soc 123(26):6308–6313

    Article  CAS  Google Scholar 

  52. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) Angew Chem Int Ed 38(13/14):2004–2009

    Article  CAS  Google Scholar 

  53. Bruns H, Patil M, Carreras J, Vázquez A, Thiel W, Goddard R, Alcarazo M (2010) Angew Chem Int Ed 49(21):3680–3683

    Article  CAS  Google Scholar 

  54. Kunetskiy RA, Polyakova SM, Vavřík J, Císařová I, Saame J, Nerut ER, Koppel I, Koppel IA, Kütt A, Leito I (2012) Chem Eur J 18(12):3621–3630

    Article  CAS  Google Scholar 

  55. Yang Y, Moinodeen F, Chin W, Ma T, Jiang Z, Tan C-H (2012) Org Lett 14(18):4762–4765

    Article  CAS  Google Scholar 

  56. Zong L, Ban X, Kee CW, Tan C-H (2014) Angew Chem Int Ed 53(44):11849–11853

    Article  CAS  Google Scholar 

  57. Kee CW, Wong MW (2016) Aust J Chem 69(9):983–990

    Article  CAS  Google Scholar 

  58. Himmel D, Krossing I, Schnepf A (2014) Angew Chem Int Ed 53(24):6047–6048

    Article  CAS  Google Scholar 

  59. Himmel D, Krossing I, Schnepf A (2014) Angew Chem Int Ed 53(2):370–374

    Article  CAS  Google Scholar 

  60. Frenking G (2014) Angew Chem Int Ed 53(24):6040–6046

    Article  CAS  Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09: EM64L-G09 Rev B01. Gaussian Inc, Wallingford CT

    Google Scholar 

  62. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120(1):215–241

    Article  CAS  Google Scholar 

  63. Andersson MP, Uvdal P (2005) J Phys Chem A 109(12):2937–2941

    Article  CAS  Google Scholar 

  64. Tonner R, Frenking G (2008) Chem Eur J 14(11):3260–3272

    Article  CAS  Google Scholar 

  65. Weigend F, Ahlrichs R (2005) PCCP 7(18):3297–3305

    Article  CAS  Google Scholar 

  66. Chandra A, Goursot A (1996) J Phys Chem 100(28):11596–11599

    Article  CAS  Google Scholar 

  67. Dixon DA, Gole JL, Komornicki A (1988) J Phys Chem 92(8):2134–2136

    Article  CAS  Google Scholar 

  68. Curtiss LA, Pople JA (1988) J Phys Chem 92(4):894–899

    Article  CAS  Google Scholar 

  69. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  70. Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73(12):4615–4624

    Article  CAS  Google Scholar 

  71. Pratihar S, Roy S (2010) J Org Chem 75(15):4957–4963

    Article  CAS  Google Scholar 

  72. Lu T, Chen F (2012) J Comput Chem 33(5):580–592

    Article  Google Scholar 

  73. Wiberg KB (1968) Tetrahedron 24(3):1083–1096

    Article  CAS  Google Scholar 

  74. Schneider SK, Roembke P, Julius GR, Loschen C, Raubenheimer HG, Frenking G, Herrmann WA (2005) Eur J Inorg Chem 2005(15):2973–2977

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Council of Scientific and Industrial Research, New Delhi, India, for Senior Research Fellowship and Department of Science and Technology (DST) Government of India, New Delhi, India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad V. Bharatam.

Additional information

Published as part of the special collection of articles “First European Symposium on Chemical Bonding”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, N., Falke, B. & Bharatam, P.V. C → N coordination bonds in (CCC) → N+  (L) complexes. Theor Chem Acc 137, 34 (2018). https://doi.org/10.1007/s00214-018-2208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2208-1

Keywords

Navigation