Skip to main content
Log in

Electrophilic activation of CO2 in cycloaddition reactions towards a nucleophilic carbenoid intermediate: new defying insights from the Molecular Electron Density Theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electrophilic activation of the two C=O double bonds of CO2 in the cycloaddition reactions involved in the domino reaction between methyl isocyanide, acetylenedicarboxylate and CO2 yielding a spiro-compound has been studied within the Molecular Electron Density Theory (MEDT) at the MPWB1K/6-311G(d,p) computational level. The approaching mode of the carbonyl groups of CO2 and lactone to the high nucleophilic carbenoid intermediate generated in the first reaction of this domino process promotes the C–C bond formation and the subsequent ring closure. MEDT analysis of cycloaddition reactions involved in this domino process enables to understand the molecular mechanism of these [2n + 2n] cycloadditions, which is different from the previously proposed [4π + 2π] cycloadditions derived from the Frontier Molecular Orbital theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Scheme 5
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schrag DP (2007) Science 315:812–813

    Article  CAS  Google Scholar 

  2. Li P, Opgenorth PH, Wernick DG, Rogers S, Wu T-Y, Higashide W, Malati P, Huo Y-X, Cho KM, Liao JC (2012) Science 335:1596–1597

    Article  CAS  Google Scholar 

  3. Agarwal J, Fujita E, Schaefer HF, Muckerman JT (2012) J Am Chem Soc 134:5180–5186

    Article  CAS  Google Scholar 

  4. Horike S, Kishida K, Watanabe Y, Inubushi Y, Umeyama D, Sugimoto M, Fukushima T, Inukai M, Kitagawa S (2012) J Am Chem Soc 134:9852–9855

    Article  CAS  Google Scholar 

  5. Arakawa H, Aresta M, Armor JN, Barteau MA, Bell EJ, Beckman AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Chem Rev 101:953–996

    Article  CAS  Google Scholar 

  6. Eghbali N, Li C-J (2007) Green Chem 9:213

    Article  CAS  Google Scholar 

  7. Louie J (2005) Curr Org Chem 9:605–623

    Article  CAS  Google Scholar 

  8. Song CS (2006) Catal Today 115:2–32

    Article  CAS  Google Scholar 

  9. Ferey G (2008) Chem Soc Rev 37:191–214

    Article  CAS  Google Scholar 

  10. He HK, Li WW, Zhong MJ, Konkolewicz D, Wu DC, Yaccato K, Rappold T, Sugar G, David NE, Matyjaszewski K (2013) Energy Environ Sci 6:488–493

    Article  CAS  Google Scholar 

  11. He HK, Zhong MJ, Konkolewicz D, Yacatto K, Rappold T, Sugar G, David NE, Gelb J, Kotwal N, Merkle A, Matyjaszewski K (2013) Adv Funct Mater 23:4720–4728

    Article  CAS  Google Scholar 

  12. Thomas A (2010) Angew Chem Int Ed 49:8328–8344

    Article  CAS  Google Scholar 

  13. Xiang Z, Zhou X, Zhou C, Zhong S, He X, Qin C, Cao D (2012) J Mater Chem 22:22663–22669

    Article  CAS  Google Scholar 

  14. D’Alessandro DM, Smit Long JR (2010) Angew Chem Int Ed 49:6058–6082

    Article  CAS  Google Scholar 

  15. Sakakura T, Choi J-C, Yasuda H (2007) Chem Rev 107:2365–2387

    Article  CAS  Google Scholar 

  16. Darensbourg DJ (2007) Chem Rev 107:2388–2410

    Article  CAS  Google Scholar 

  17. Ma J, Song JL, Liu HZ, Liu JL, Zhang ZF, Jiang T, Fan HL, Han BX (2012) Green Chem 14:1743–1748

    Article  CAS  Google Scholar 

  18. Gibson DH (1996) Chem Rev 96:2063–2096

    Article  CAS  Google Scholar 

  19. Dell’Amico DB, Calderazzo F, Labella L, Marchetti F, Pampaloni G (2003) Chem Rev 103:3857–3898

    Article  CAS  Google Scholar 

  20. Han Z, Rong L, Wu J, Zhang L, Wang Z, Ding K (2012) Angew Chem Int Ed 51:13041–13045

    Article  CAS  Google Scholar 

  21. Schouten KJP, Kwon Y, van der Ham CJM, Qin Z, Koper MTM (2011) Chem Sci 2:1902–1909

    Article  CAS  Google Scholar 

  22. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Chem Soc Rev 38:89–99

    Article  CAS  Google Scholar 

  23. Gao Q, Tan X-C, Pan Y-M, Wang H-S, Liang Y (2012) Chem Commun 48:12080–12081

    Article  CAS  Google Scholar 

  24. Ugi I, Meyr R (1958) Angew Chem 70:702–703

    Article  CAS  Google Scholar 

  25. Domling A (2006) Chem Rev 106:17–89

    Article  CAS  Google Scholar 

  26. Millich F (1972) Chem Rev 2:101–113

    Article  Google Scholar 

  27. Dömling A, Ugi I (2000) Angew Chem Int Ed 39:3168–3210

    Article  Google Scholar 

  28. Gulevich AV, Zhdanko AG, Orru RVA, Nenajdenko VG (2010) Chem Rev 110:5235–5331

    Article  CAS  Google Scholar 

  29. Sadjadi S, Heravi MM (2011) Tetrahedron 67:2707–2752

    Article  CAS  Google Scholar 

  30. De Moliner F, Banfi L, Riva R, Basso A (2011) Comb Chem High Throughput Screen 14:782–810

    Article  Google Scholar 

  31. Sadabad HR, Bazguir A, Eskandari M, Ghahremanzadeh R (2014) Monatsh Chem 145:1851–1855

    Article  CAS  Google Scholar 

  32. Song P, Zhao L, Ji S (2014) Chin J Chem 32:381–386

    Article  CAS  Google Scholar 

  33. Zhu T-H, Wang S-Y, Tao Y-Q, Wei TQ, Ji S (2014) J Org Lett 16:12603–12608

    Google Scholar 

  34. Gu Z-Y, Zhu T-H, Cao J-J, Xu XP, Wang SY, Ji SJ (2014) ACS Catal 4:49–52

    Article  CAS  Google Scholar 

  35. Nair V, Vinoda AU, Abhilasha N, Menona RS, Santhia V, Varmaa RL, Vijia S, Mathewa S, Srinivasb R (2003) Tetrahedron 59:10279–10286

    Article  CAS  Google Scholar 

  36. Nair V, Vinoda AU (2000) Chem Commun 1019–1020

  37. Ghadari R, Hajishaabanha F, Mahyari M, Shaabani A, Khavasi HR (2012) Tetrahedron Lett 53:4018–4021

    Article  CAS  Google Scholar 

  38. Esmaeili AA, Darbanian M (2003) Tetrahedron 59:5545–5548

    Article  CAS  Google Scholar 

  39. Shaabani A, Rezayan AH, Ghasemi S, Sarvary AA (2009) Tetrahedron Lett 50:1456–1458

    Article  CAS  Google Scholar 

  40. Zhao L-L, Wang S-Y, Xu X-P, Ji S-J (2013) Chem Commun 49:2569–2571

    Article  CAS  Google Scholar 

  41. Fukui, K (1964) In: Löwdin PO (ed) Molecular orbitals in chemistry physics and biology. Academic: New York

  42. Fleming I (2009) Molecular orbitals and organic chemical reactions. Wiley, New York

    Book  Google Scholar 

  43. Scerri ER (2000) J Chem Educ 77:1492–1494

    Article  CAS  Google Scholar 

  44. Domingo LR (2016) Molecules 21:1319

    Article  CAS  Google Scholar 

  45. Ríos-Gutiérrez M, Domingo LR, Pérez P (2015) RSC Adv 5:84797–84809

    Article  CAS  Google Scholar 

  46. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Tetrahedron 72:1524–1532

    Article  CAS  Google Scholar 

  47. Domingo LR, Ríos-Gutiérrez M, Duque-Noreña M, Chamorro E, Pérez P (2016) Theor Chem Acc 135:160–172

    Article  CAS  Google Scholar 

  48. Parr RG, Yang W (1995) Annu Rev Phys Chem 46:701–728

    Article  CAS  Google Scholar 

  49. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  50. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  51. De Proft F, Geerlings P (2001) Chem Rev 101:1451–1464

    Article  CAS  Google Scholar 

  52. Ayers PW, Anderson JSM, Bartolotti L (2005) J Int J Quantum Chem 101:520–534

    Article  CAS  Google Scholar 

  53. Gázquez JL (2008) J Mex Chem Soc 52:3–10

    Google Scholar 

  54. Nalewajski RF, Korchowiec J, Michalak A (1996) In: Nalewajski R (ed) Density functional theory IV, topics in current chemistry, vol 183. Springer, Berlin, p 25

  55. Geerlings P, Fias S, Boisdenghien Z, De Proft F (2014) Chem Soc Rev 43:4989–5008

    Article  CAS  Google Scholar 

  56. Gómez B, Chattaraj PK, Chamorro E, Contreras R, Fuentealba P (2002) J Phys Chem A 106:11227–11233

    Article  CAS  Google Scholar 

  57. Chamorro E, Pérez P, Duque M, De Proft F, Geerlings P (2008) J Chem Phys 129:064117

    Article  CAS  Google Scholar 

  58. Chamorro E, De Proft F, Geerlings P (2005) J Chem Phys 123:154104

    Article  CAS  Google Scholar 

  59. Chamorro E, De Proft F, Geerlings P (2005) J Chem Phys 123:084104

    Article  CAS  Google Scholar 

  60. Pérez P, Chamorro E, Ayers PW (2008) J Chem Phys 128:204108

    Article  CAS  Google Scholar 

  61. Chamorro E, Contreras R, Fuentealba P (2000) J Chem Phys 113:10861–10866

    Article  CAS  Google Scholar 

  62. Domingo LR, Chamorro E, Pérez P (2009) Eur J Org Chem 3036–3044

  63. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  64. Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, Vonschnering HG (1992) Angew Chemie Int Ed 31:187–188

    Article  Google Scholar 

  65. Savin A, Silvi B, Colonna F (1996) Can J Chem 74:1088–1096

    Article  CAS  Google Scholar 

  66. Savin A, Nesper R, Wengert S, Fassler TF (1997) Angew Chemie Int Ed 36:1809–1832

    Article  Google Scholar 

  67. Silvi B, Savin A (1994) Nature 371:683–686

    Article  CAS  Google Scholar 

  68. Silvi B (2002) J Mol Struct 614:3–10

    Article  CAS  Google Scholar 

  69. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen J, Yang AW (2010) J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  70. Li W, Huang D, Lv Y (2014) J Org Chem 79:10811–10819

    Article  CAS  Google Scholar 

  71. Domingo LR, Emamian SR (2014) Tetrahedron 70:1267–1273

    Article  CAS  Google Scholar 

  72. Domingo LR, Aurell MJ, Pérez P (2015) Tetrahedron 71:1050–1057

    Article  CAS  Google Scholar 

  73. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Tetrahedron 272:1524–1532

    Article  CAS  Google Scholar 

  74. Domingo LR, Aurell MJ, Pérez P (2014) Tetrahedron 70:4519–4525

    Article  CAS  Google Scholar 

  75. Huisgen R (1961) Proc Chem Soc 357–396

  76. Huisgen R (1963) Angew Chem Int Ed Engl 75:742–754

    Article  CAS  Google Scholar 

  77. Krokidis X, Noury S, Silvi B (1997) J Phys Chem A 101:7277–7282

    Article  CAS  Google Scholar 

  78. Krokidis X, Goncalves V, Savin A, Silvi B (1998) J Phys Chem A 102:5065–5073

    Article  CAS  Google Scholar 

  79. Krokidis X, Moriarty NW, Lester WA, Frenklach M (1999) Chem Phys Lett 314:534–542

    Article  CAS  Google Scholar 

  80. Fourre I, Silvi B, Chaquin P, Sevin A (1999) J Comput Chem 20:897–910

    Article  CAS  Google Scholar 

  81. Chesnut DB, Bartolotti L (2000) J Chem Phys 257:175–181

    CAS  Google Scholar 

  82. Fuster F, Sevin A, Silvi B (2000) J Phys Chem A 104:852–858

    Article  CAS  Google Scholar 

  83. Chamorro E, Santos JC, Gómez B, Contreras R, Fuentealba P (2002) J Phys Chem A 106:11533–11539

    Article  CAS  Google Scholar 

  84. Chaquin P, Scemama A (2004) Chem Phys Lett 394:244–249

    Article  CAS  Google Scholar 

  85. Polo V, Andrés J, Castillo R, Berski S, Silvi B (2004) Chem Eur J 10:5165–5172

    Article  CAS  Google Scholar 

  86. Polo V, Andrés J (2005) J Comput Chem 26:1427–1437

    Article  CAS  Google Scholar 

  87. Santos JC, Andrés J, Aizman A, Fuentealba P, Polo V (2005) J Phys Chem A 109:3687–3693

    Article  CAS  Google Scholar 

  88. Berski S, Andrés J, Silvi B, Domingo LR (2006) J Phys Chem A 110:13939–13948

    Article  CAS  Google Scholar 

  89. Polo V, Andrés J (2007) J Chem Theory Comput 3:816–823

    Article  CAS  Google Scholar 

  90. Polo V, Gonzalez-Navarrete P, Silvi B, Andrés J (2008) Theor Chem Acc 120:341–349

    Article  CAS  Google Scholar 

  91. Salinas-Olvera JP, Gomez RM, Cortes-Guzman F (2008) J Phys Chem A 112:2906–2912

    Article  CAS  Google Scholar 

  92. Ndassa IM, Silvi B, Volatron F (2010) J Phys Chem A 114:12900–12906

    Article  CAS  Google Scholar 

  93. Gillet N, Chaudret R, Contreras-Garcia J, Yang WT, Silvi B, Piquemal JP (2012) J Chem Theory Comput 8:3993–3997

    Article  CAS  Google Scholar 

  94. Cárdenas C, Chamorro E, Notario R (2005) J Phys Chem A 109:4352–4358

    Article  CAS  Google Scholar 

  95. Chamorro E, Santos JC, Gómez B, Contreras R, Fuentealba P (2001) J Chem Phys 114:23–34

    Article  CAS  Google Scholar 

  96. Domingo LR, Ríos-Gutiérrez M, Pérez P, Chamorro E (2016) Mol Phys 114:1374–1391

    Article  CAS  Google Scholar 

  97. Domingo LR, Saéz JA, Zaragozá RJ, Arnó M (2008) J Org Chem 73:8791–8799

    Article  CAS  Google Scholar 

  98. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  99. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  100. Schlegel HBJ (1982) Comput Chem 2:214–218

    Article  Google Scholar 

  101. Schlegel HB (1994) In: Yarkony DR (ed) Modern electronic structure theory. World Scientific Publishing, Singapore.

  102. Frisch MJ et al (2009) Gaussian 09 revision A02 Gaussian Inc., Wallingford, CT

  103. Fukui K (1970) J Phys Chem 74:4161–4163

    Article  CAS  Google Scholar 

  104. González C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  Google Scholar 

  105. González C, Schlegel HB (1991) J Chem Phys 95:585–5860

    Article  Google Scholar 

  106. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  107. Simkin BY, Sheikhet I (1995) Quantum chemical and statistical theory of solutions-a computational approach. Ellis Horwod, London

    Google Scholar 

  108. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  109. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  110. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  111. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  112. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  113. Noury S, Krokidis X, Fuster F, Silvi B (1999) Comput Chem 23:597–604

    Article  CAS  Google Scholar 

  114. Parr RG, von Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  115. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  116. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University, New York

    Google Scholar 

  117. Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615–4624

    Article  CAS  Google Scholar 

  118. Domingo LR, Pérez P (2011) Org Biomol Chem 9:7168–7175

    Article  CAS  Google Scholar 

  119. Kohn W, Sham L (1965) J Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  120. Domingo LR, Pérez P, Sáez JA (2013) RSC Adv 3:1486–1494

    Article  CAS  Google Scholar 

  121. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Molecules 21:748

    Article  CAS  Google Scholar 

  122. Domingo LR (2014) RSC Adv 4:32415–32428

    Article  CAS  Google Scholar 

  123. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Tetrahedron 58:4417–4423

    Article  CAS  Google Scholar 

  124. Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) J Mol Struct Theochem 865:68–72

    Article  CAS  Google Scholar 

  125. Domingo LR, Pérez P, Sáez JA (2013) Tetrahedron 69:107–114

    Article  CAS  Google Scholar 

  126. Berski S, Andrés J, Silvi B, Domingo LR (2003) J Phys Chem A 107:6014–6024

    Article  CAS  Google Scholar 

  127. Polo V, Andres J, Berski S, Domingo LR, Silvi B (2008) J Phys Chem A 112:7128–7136

    Article  CAS  Google Scholar 

  128. Andrés J, González-Navarrete P, Safont VS (2014) Int J Quant Chem 114:1239–1252

    Article  CAS  Google Scholar 

  129. Andrés J, Berski S, Domingo LR, Polo V, Silvi B (2011) Curr Org Chem 15:3566–3575

    Article  Google Scholar 

  130. Andrés J, Gracia L, González-Navarrete P, Safont VS (2015) Comp Theor Chem 1053:17–30

    Article  CAS  Google Scholar 

  131. Polo V, Andres J, Berski S, Domingo LR, Silvi B (2008) J Phys Chem A 112:7128–7136

    Article  CAS  Google Scholar 

  132. Domingo LR, Sáez JA (2014) RSC Adv 4:58559–58566

    Article  CAS  Google Scholar 

  133. Domingo LR, Ríos-Gutiérez M, Sáez JA (2015) RSC Adv 5:37119–37129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministerio de Economía y Competitividad of the Spanish Government, project CTQ2013-45646-P, Fondecyt (Chile) grants 1140341 and 1140343, Millennium Nucleus Chemical Processes and Catalysis (CPC) Project No. 120082 and the Universidad Andrés Bello (UNAB) for continuous support through research grants DI-806-15/R and DI-793-15/R. Prof L.R.D. also thanks FONDECYT for continuous support through Cooperación Internacional. M. R.-G. thanks the Ministerio de Economía y Competitividad for a predoctoral contract co-financed by the European Social Fund (BES-2014-068258).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis R. Domingo or Patricia Pérez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1964 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingo, L.R., Ríos-Gutiérrez, M., Chamorro, E. et al. Electrophilic activation of CO2 in cycloaddition reactions towards a nucleophilic carbenoid intermediate: new defying insights from the Molecular Electron Density Theory. Theor Chem Acc 136, 1 (2017). https://doi.org/10.1007/s00214-016-2022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2022-6

Keywords

Navigation