Skip to main content
Log in

Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Understanding the complex events that take place in nucleic acids upon UV light exposure constitutes a key step in the comprehension of life evolution, as well as in the determination of the mechanisms that can originate genetic mutations and lead to the development of diseases like skin cancer. Over the last decade, intra- and inter-strand processes that depend on the relative movements of the DNA strands have been proposed as photochemical pathways capable to deactivate the excess of energy provided by UV light. In order to elucidate the relative importance of both types of photochemical routes, high-level ab initio quantum chemical computations have been conducted on a model formed by the guanine–cytosine base pair and an additional π-stacked cytosine yielding a GC/C trimeric system. The effect of the π-stacking has been evaluated along the reaction coordinate of the stepwise double-hydrogen-transfer (SDHT) mechanism reported in a previous study (Sauri et al. in J Chem Theory Comput 9: 481–496, 2013). It becomes apparent from the present findings that the SDHT process is available at a wide range of cytosine–cytosine intermolecular distances. At a face-to-face orientation of the two cytosine molecules with an intermolecular distance of 3.4 Å, the highly effective π-stacking interaction favours the formation of the CC excimer of the canonical nucleobases. Nevertheless, no barriers are found for the inter-strand mechanism. At larger interacting distances (4.0 Å), both intra-strand photochemistry and inter-strand photochemistry have to be simultaneously considered, whereas at very short distances (2.8 Å) the SDHT process is significantly hindered. The present work confirms the availability of the intermolecular hydrogen transfer in a wide region of the distinct hypersurfaces explored. As compared to the canonical WC base pair, the tautomeric form has more favourable SDHT channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Crespo-Hernández CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104:1977–2019

    Article  CAS  Google Scholar 

  2. Chen J, Zhang Y, Kohler B (2015) Excited states in DNA strands investigated by ultrafast laser spectroscopy. Top Curr Chem 356:39–87

    Article  Google Scholar 

  3. Giussani A, Segarra-Martí J, Roca-Sanjuán D, Merchán M (2015) Excitation of nucleobases from a computational perspective I: reaction paths. Top Curr Chem 355:57–97

    Article  Google Scholar 

  4. Lu Y, Lan Z, Thiel W (2015) Computational modeling of photoexcitation in DNA single and double strands. Top Curr Chem 356:89–122

    Article  Google Scholar 

  5. Cadet J, Grand A, Douki T (2015) Solar UV Radiation-Induced DNA Bipyrimidine Photoproducts: Formation and Mechanistic Insights. Top Curr Chem 356:249–275

    Article  Google Scholar 

  6. Kohler B (2010) Nonradiative decay mechanisms in DNA model systems. J Phys Chem Lett 1:2047–2053

    Article  CAS  Google Scholar 

  7. Markovitsi D, Gustavsson T, Vayá I (2010) Fluorescence of DNA duplexes: from model helices to natural DNA. J Phys Chem Lett 1:3271–3276

    Article  CAS  Google Scholar 

  8. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B (2009) DNA excited-state dynamics: from single bases to the double helix. Annu Rev Phys Chem 60:217–239

    Article  CAS  Google Scholar 

  9. Merchán M, Serrano-Andrés L (2008) Photostability and photoreactivity in biomolecules: quantum chemistry of nucleic acid base monomers and dimers. In: Leszczynski J, Shukla MK (eds) Radiation induced molecular phenomena in nucleic acids: a comprehensive theoretical and experimental analysis. Springer, The Netherlands

    Google Scholar 

  10. Barbatti M, Aquino AJA, Szymczak JJ, Nachtigallova D, Hobza P, Lischka H (2010) Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proc Natl Acad Sci USA 107:21453–21458

    Article  CAS  Google Scholar 

  11. Serrano-Andrés L, Merchán M (2009) Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective. J Photochem Photobiol C-Photochem Rev 10:21–32

    Article  CAS  Google Scholar 

  12. Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, Cadet J, Douki T, Mouret S, Tucker MA, Popratiloff A, Merlino G, De Fabo EC (2012) Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun 3:884

    Article  CAS  Google Scholar 

  13. Cadet J, Mouret S, Ravanat JL, Douki T (2012) Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 88:1048–1065

    Article  CAS  Google Scholar 

  14. Rak J, Chomicz L, Wiczk J, Westphal K, Zdrowowicz M, Wityk P, Żyndul M, Makurat S, Golon Ł (2015) Mechanisms of damage to DNA labeled with electrophilic nucleobases induced by ionizing or UV radiation. J Phys Chem B 119:8227–8238

    Article  CAS  Google Scholar 

  15. Rak J, Kobyłecka M, Storoniak P (2011) Single strand break in DNA coupled to the O-P bond cleavage a computational study. J Phys Chem B 115:1911–1917

    Article  CAS  Google Scholar 

  16. Canuel C, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Elhanine M (2005) Excited states dynamics of DNA and RNA bases: Characterization of a stepwise deactivation pathway in the gas phase. J Chem Phys 122:074316

    Article  CAS  Google Scholar 

  17. Quinn S, Doorley GW, Watson GW, Cowan AJ, George MW, Parker AW, Ronayne KL, Towrie M, Kelly JM (2007) Ultrafast IR spectroscopy of the short-lived transients formed by UV excitation of cytosine derivatives. Chem Commun 21:2130–2132

    Article  CAS  Google Scholar 

  18. Hare PM, Crespo-Hernández CE, Kohler B (2007) Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. Proc Natl Acad Sci USA 104:435–440

    Article  CAS  Google Scholar 

  19. Hare PM, Middleton CT, Mertel KI, Herbert JM, Kohler B (2008) Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine. Chem Phys 347:383–392

    Article  CAS  Google Scholar 

  20. Serrano-Andrés L, Merchán M, Borin AC (2006) Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry. Proc Natl Acad Sci USA 103:8691–8696

    Article  CAS  Google Scholar 

  21. Serrano-Andrés L, Merchán M, Borin AC (2008) A three-state model for the photophysics of guanine. J Am Chem Soc 130:2473–2484

    Article  CAS  Google Scholar 

  22. Merchán M, González-Luque R, Climent T, Serrano-Andrés L, Rodriguez E, Reguero M, Peláez D (2006) Unified model for the ultrafast decay of pyrimidine nucleobases. J Phys Chem B 110:26471–26476

    Article  CAS  Google Scholar 

  23. Improta R, Barone V (2015) Excited states behavior of nucleobases in solution: insights from computational studies. In: Borin AC, Ullrich S (eds) Barbatti M. Springer International Publishing, Photoinduced phenomena in nucleic acids I

    Google Scholar 

  24. Ismail N, Blancafort L, Olivucci M, Kohler B, Robb MA (2002) Ultrafast decay of electronically excited singlet cytosine via π, π* to nO, π* state switch. J Am Chem Soc 124:6818–6819

    Article  CAS  Google Scholar 

  25. Asturiol D, Lasorne B, Worth GA, Robb MA, Blancafort L (2010) Exploring the sloped-to-peaked S2/S1 seam of intersection of thymine with electronic structure and direct quantum dynamics calculations. Phys Chem Chem Phys 12:4949–4958

    Article  CAS  Google Scholar 

  26. Szymczak JJ, Barbatti M, Hoo JTS, Adkins JA, Windus TL, Nachtigallova D, Lischka H (2009) Photodynamics simulations of thymine: relaxation into the first excited singlet state. J Phys Chem A 113:12686–12693

    Article  CAS  Google Scholar 

  27. Asturiol D, Lasorne B, Robb MA, Blancafort L (2009) Photophysics of the ππ* and nπ* States of Thymine: mS-CASPT2 Minimum-Energy Paths and CASSCF on-the-Fly Dynamics. J Phys Chem A 113:10211–10218

    Article  CAS  Google Scholar 

  28. González-Luque R, Climent T, González-Ramírez I, Merchán M, Serrano-Andrés L (2010) Singlet-triplet states interaction regions in DNA/RNA nucleobase hypersurfaces. J Chem Theor Comput 6:2103–2114

    Article  CAS  Google Scholar 

  29. Martínez-Fernández L, Gónzalez L, Corral I (2012) An ab initio mechanism for efficient population of triplet states in cytotoxic sulfur substituted DNA bases: the case of 6-thioguanine. Chem Commun 48:2134–2136

    Article  CAS  Google Scholar 

  30. Takaya T, Su C, de La Harpe K, Crespo-Hernández CE, Kohler B (2008) UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases. Proc Natl Acad Sci USA 105:10285–10290

    Article  CAS  Google Scholar 

  31. Chen J, Kohler B (2014) Base stacking in adenosine dimers revealed by femtosecond transient absorption spectroscopy. J Am Chem Soc 136:6362–6372

    Article  CAS  Google Scholar 

  32. Bucher DB, Pilles BM, Carell T, Zinth W (2014) Charge separation and charge delocalization identified in long-living states of photoexcited DNA. Proc Natl Acad Sci USA 111:4369–4374

    Article  CAS  Google Scholar 

  33. Chen J, Thazhathveetil AK, Lewis FD, Kohler B (2013) Ultrafast excited-state dynamics in hexaethyleneglycol-linked DNA homoduplexes made of A·T base pairs. J Am Chem Soc 135:10290–10293

    Article  CAS  Google Scholar 

  34. Vayá I, Gustavsson T, Douki T, Berlin Y, Markovitsi D (2012) Electronic excitation energy transfer between nucleobases of natural DNA. J Am Chem Soc 134:11366–11368

    Article  CAS  Google Scholar 

  35. Bucher DB, Schlueter A, Carell T, Zinth W (2014) Watson-Crick base pairing controls excited-state decay in natural DNA. Angew Chem Int Ed 53:11366–11369

    Article  CAS  Google Scholar 

  36. Sinha RP, Hader D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    Article  CAS  Google Scholar 

  37. Giussani A, Serrano-Andrés L, Merchán M, Roca-Sanjuán D, Garavelli M (2013) Photoinduced formation mechanism of the Thymine-Thymine (6–4) adduct. J Phys Chem B 117:1999–2004

    Article  CAS  Google Scholar 

  38. Buchvarov I, Wang Q, Raytchev M, Trifonov A, Fiebig T (2007) Electronic energy delocalization and dissipation in single- and double-stranded DNA. Proc Natl Acad Sci USA 104:4794–4797

    Article  CAS  Google Scholar 

  39. Olaso-González G, Merchán M, Serrano-Andrés L (2009) The role of adenine excimers in the photophysics of oligonucleotides. J Am Chem Soc 131:4368–4377

    Article  CAS  Google Scholar 

  40. Huix-Rotllant M, Brazard J, Improta R, Burghardt I, Markovitsi D (2015) Stabilization of mixed Frenkel-charge transfer excitons extended across both strands of Guanine–Cytosine DNA duplexes. J Phys Chem Lett 6:2247–2251

    Article  CAS  Google Scholar 

  41. Spata VA, Matsika S (2014) Role of excitonic coupling and charge-transfer states in the absorption and CD spectra of Adenine-based oligonucleotides investigated through QM/MM simulations. J Phys Chem A 118:12021–12030

    Article  CAS  Google Scholar 

  42. Conti I, Altoe P, Stenta M, Garavelli M, Orlandi G (2010) Adenine deactivation in DNA resolved at the CASPT2//CASSCF/AMBER level. Phys Chem Chem Phys 12:5016–5023

    Article  CAS  Google Scholar 

  43. Conti I, Nenov A, Hofinger S, Flavio Altavilla S, Rivalta I, Dumont E, Orlandi G, Garavelli M (2015) Excited state evolution of DNA stacked adenines resolved at the CASPT2//CASSCF/Amber level: from the bright to the excimer state and back. Phys Chem Chem Phys 17:7291–7302

    Article  CAS  Google Scholar 

  44. Nachtigallová D, Zelený T, Ruckenbauer M, Müller T, Barbatti M, Hobza P, Lischka H (2010) Does stacking restrain the photodynamics of individual nucleobases? J Am Chem Soc 132:8261–8263

    Article  CAS  Google Scholar 

  45. Aquino AJ, Nachtigallova D, Hobza P, Truhlar DG, Hättig C, Lischka H (2011) The charge-transfer states in a stacked nucleobase dimer complex: a benchmark study. J Comput Chem 32:1217–1227

    Article  CAS  Google Scholar 

  46. Plasser F, Aquino AJ, Lischka H, Nachtigallová D (2014) Electronic excitation processes in single-strand and double-strand DNA: a computational approach. Top Curr Chem 356:1–37

    Article  Google Scholar 

  47. Plasser F, Aquino AJ, Hase WL, Lischka H (2012) UV absorption spectrum of alternating DNA duplexes analysis of excitonic and charge transfer interactions. J Phys Chem A 116:11151–11160

    Article  CAS  Google Scholar 

  48. Szalay PG, Watson T, Perera A, Lotrich V, Bartlett RJ (2013) Benchmark studies on the building blocks of DNA. 3. Watson-Crick and stacked base pairs. J Phys Chem A 117:3149–3157

    Article  CAS  Google Scholar 

  49. Roca-Sanjuán D, Olaso-González G, González-Ramírez I, Serrano-Andrés L, Merchán M (2008) Molecular basis of DNA photodimerization: intrinsic production of cyclobutane cytosine dimers. J Am Chem Soc 130:10768–10779

    Article  CAS  Google Scholar 

  50. Boggio-Pasqua M, Groenhof G, Schäfer LV, Grubmüller H, Robb MA (2007) Ultrafast deactivation channel for thymine dimerization. J Am Chem Soc 129:10996–10997

    Article  CAS  Google Scholar 

  51. Climent T, González-Ramírez I, González-Luque R, Merchán M, Serrano-Andrés L (2010) Cyclobutane pyrimidine photodimerization of DNA/RNA nucleobases in the triplet state. J Phys Chem Lett 1:2072–2076

    Article  CAS  Google Scholar 

  52. González-Ramírez I, Roca-Sanjuán D, Climent T, Serrano-Pérez JJ, Merchán M, Serrano-Andrés L (2011) On the photoproduction of DNA/RNA cyclobutane pyrimidine dimers. Theor Chem Acc 128:705–711

    Article  CAS  Google Scholar 

  53. Sauri V, Gobbo JP, Serrano-Pérez JJ, Lundberg M, Coto PB, Serrano-Andrés L, Borin AC, Lindh R, Merchán M, Roca-Sanjuán D (2012) Proton/Hydrogen Transfer mechanisms in the Guanine–Cytosine base pair: photostability and tautomerism. J Chem Theor Comput 9:481–496

    Article  CAS  Google Scholar 

  54. Sobolewski AL, Domcke W (2004) Ab initio studies on the photophysics of the Guanine–Cytosine base pair. Phys Chem Chem Phys 6:2763–2771

    Article  CAS  Google Scholar 

  55. Schwalb NK, Temps F (2008) Base sequence and higher-order structure induce the complex excited-state dynamics in DNA. Science 322:243–245

    Article  CAS  Google Scholar 

  56. Schwalb NK, Temps F (2007) Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine. J Am Chem Soc 129:9272–9273

    Article  CAS  Google Scholar 

  57. Ko C, Hammes-Schiffer S (2013) Charge-transfer excited states and proton transfer in model guanine-cytosine DNA duplexes in water. J Phys Chem Lett 4:2540–2545

    Article  CAS  Google Scholar 

  58. Zhang Y, de La Harpe K, Beckstead AA, Improta R, Kohler B (2015) UV-induced proton transfer between DNA strands. J Am Chem Soc 137:7059–7062

    Article  CAS  Google Scholar 

  59. Hammes-Schiffer S (2012) Proton-coupled electron transfer: classification scheme and guide to theoretical methods. Energ Environ Sci 5:7696–7703

    Article  CAS  Google Scholar 

  60. Hammes-Schiffer S (2012) Proton-coupled electron transfer: moving together and charging forward. J Am Chem Soc 137:8860–8871

    Article  CAS  Google Scholar 

  61. Hammes-Schiffer S, Stuchebrukhov AA (2010) Theory of coupled electron and proton transfer reactions. Chem Rev 110:6939–6960

    Article  CAS  Google Scholar 

  62. de La Harpe K, Crespo-Hernández CE, Kohler B (2009) Deuterium isotope effect on excited-state dynamics in an alternating GC oligonucleotide. J Am Chem Soc 131:17557–17559

    Article  CAS  Google Scholar 

  63. Groenhof G, Schäfer LV, Boggio-Pasqua M, Goette M, Grubmüller H, Robb MA (2007) Ultrafast deactivation of an excited Cytosine–Guanine base pair in DNA. J Am Chem Soc 129:6812–6819

    Article  CAS  Google Scholar 

  64. Starikov EB, Cuniberti G, Tanaka S (2009) Conformation dependence of DNA exciton parentage. J Phys Chem B 113:10428–10435

    Article  CAS  Google Scholar 

  65. Alexandrova AN, Tully JC, Granucci G (2010) Photochemistry of DNA fragments via semiclassical nonadiabatic dynamics. J Phys Chem B 114:12116–12128

    Article  CAS  Google Scholar 

  66. Serrano-Andrés L, Merchán M (2005) Quantum chemistry of the excited state: 2005 overview. J Mol Struc-THEOCHEM 729:99–108

    Article  CAS  Google Scholar 

  67. Roca-Sanjuán D, Aquilante F, Lindh R (2012) Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. WIREs Comput Mol Sci 2:585–603

    Article  CAS  Google Scholar 

  68. González L, Escudero D, Serrano-Andrés L (2012) Progress and challenges in the calculation of electronic excited states. ChemPhysChem 13:28–51

    Article  CAS  Google Scholar 

  69. Roca-Sanjuán D, Fdez-Galván I, Lindh R, Ya-Jun L (2015) Recent method developments and applications in computational photochemistry chemiluminescence and bioluminescence. In: Albini A (ed) Photochemistry, vol 42. The Royal Society of Chemistry, London

    Google Scholar 

  70. Serrano-Andrés L, Roca-Sanjuán D, Olaso-González G (2010) Recent trends in computational photochemistry. In: Albini A (ed) Photochemistry, vol 38. The Royal Society of Chemistry, London

    Google Scholar 

  71. Roos BO (1987) The complete active space self-consistent field method and its applications in electronic structure calculations. Adv Chem Phys 69:399–446

  72. Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R (2012) Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem Rev 112:108–181

    Article  CAS  Google Scholar 

  73. Lu XJ, Olson WK (2003) 3DNA: a software package for the analysis rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31:5108–5121

    Article  CAS  Google Scholar 

  74. Andersson K, Malmqvist PÅ, Roos BO (1992) 2nd-order perturbation-theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218–1226

    Article  CAS  Google Scholar 

  75. Ghigo G, Roos BO, Malmqvist PÅ (2004) A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett 396:142–149

    Article  CAS  Google Scholar 

  76. Forsberg N, Malmqvist PÅ (1997) Multiconfiguration perturbation theory with imaginary level shift. Chem Phys Lett 274:196–204

    Article  CAS  Google Scholar 

  77. Boys SF, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 100:65–73

    Article  Google Scholar 

  78. Malmqvist PÅ, Roos BO, Schimmelpfennig B (2002) The restricted active space (RAS) state interaction approach with spin-orbit coupling. Chem Phys Lett 357:230–240

    Article  CAS  Google Scholar 

  79. Roos BO, Malmqvist PÅ (2004) Relativistic quantum chemistry: the multiconfigurational approach. Phys Chem Chem Phys 6:2919–2927

    Article  CAS  Google Scholar 

  80. Hess BA, Marian CM, Wahlgren U, Gropen O (1996) A mean-field spin-orbit method applicable to correlated wavefunctions. Chem Phys Lett 251:365–371

    Article  CAS  Google Scholar 

  81. Christiansen O, Gauss J, Schimmelpfennig B (2000) Spin-orbit coupling constants from coupled-cluster response theory. Phys Chem Chem Phys 2:965–971

    Article  CAS  Google Scholar 

  82. Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist PÅ, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) Software news and update MOLCAS 7: the next generation. J Comput Chem 31:224–247

    Article  CAS  Google Scholar 

  83. Aquilante F, Pedersen TB, Veryazov V, Lindh R (2013) MOLCAS-a software for multiconfigurational quantum chemistry calculations. WIREs Comput Mol Sci 3:143–149

    Article  CAS  Google Scholar 

  84. Sobolewski AL, Domcke W, Hattig C (2005) Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: the role of electron-driven proton-transfer processes. Proc Natl Acad Sci USA 102:17903–17906

    Article  CAS  Google Scholar 

  85. Olaso-González G, Roca-Sanjuán D, Serrano-Andrés L, Merchán M (2006) Toward the understanding of DNA fluorescence: the singlet excimer of cytosine. J Chem Phys 125:231102

    Article  CAS  Google Scholar 

  86. Altavilla SF, Segarra-Martí J, Nenov A, Conti I, Rivalta I, Garavelli M (2015) Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate. Front Chem 3:29

    Article  CAS  Google Scholar 

  87. Douki T, Cadet J (2001) Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions. Biochemistry 40:2495–2501

    Article  CAS  Google Scholar 

  88. Douki T (2013) The variety of UV-induced pyrimidine dimeric photoproducts in DNA as shown by chromatographic quantification methods. Photochem Photobiol Sci 12:1286–1302

    Article  CAS  Google Scholar 

  89. Kwok W-M, Ma C, Phillips DL (2008) A doorway state leads to photostability or triplet photodamage in thymine DNA. J Am Chem Soc 130:5131–5139

    Article  CAS  Google Scholar 

  90. Merchán M, Serrano-Andrés L, Robb MA, Blancafort L (2005) Triplet-state formation along the ultrafast decay of excited singlet cytosine. J Am Chem Soc 127:1820–1825

    Article  CAS  Google Scholar 

  91. Gut IG, Wood PD, Redmond RW (1996) Interaction of triplet photosensitizers with nucleotides and DNA in aqueous solution at room temperature. J Am Chem Soc 118:2366–2373

    Article  CAS  Google Scholar 

  92. Wood PD, Redmond RW (1996) Triplet state interactions between nucleic acid bases in solution at room temperature: intermolecular energy and electron transfer. J Am Chem Soc 118:4256–4263

    Article  CAS  Google Scholar 

  93. Bosca F, Lhiaubet-Vallet V, Cuquerella MC, Castell JV, Miranda MA (2006) The triplet energy of thymine in DNA. J Am Chem Soc 128:6318–6319

    Article  CAS  Google Scholar 

  94. Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res-Fund Mol M 571:3–17

    Article  CAS  Google Scholar 

  95. Sergentu D-C, Maurice R, Havenith RWA, Broer R, Roca-Sanjuán D (2014) Computational determination of the dominant triplet population mechanism in photoexcited benzophenone. Phys Chem Chem Phys 16:25393–25403

    Article  CAS  Google Scholar 

  96. Dumont E, Wibowo M, Roca-Sanjuán D, Garavelli M, Assfeld X, Monari A (2015) Resolving the benzophenone DNA-photosensitization mechanism at QM/MM level. J Phys Chem Letters 6:576–580

    Article  CAS  Google Scholar 

  97. Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover Publications, New York

    Google Scholar 

  98. West BA, Moran AM (2012) Two-dimensional electronic spectroscopy in the ultraviolet wavelength range. J Phys Chem Lett 3:2575–2581

    Article  CAS  Google Scholar 

  99. West BA, Womick JM, Moran AM (2013) Interplay between vibrational energy transfer and excited state deactivation in DNA components. J Phys Chem A 117:5865–5874

    Article  CAS  Google Scholar 

  100. Krause P, Matsika S, Kotur M, Weinacht T (2012) The influence of excited state topology on wavepacket delocalization in the relaxation of photoexcited polyatomic molecules. J Chem Phys 137:22A537

    Article  CAS  Google Scholar 

  101. Nenov A, Segarra-Martí J, Giussani A, Conti I, Rivalta I, Dumont E, Jaiswal VK, Altavilla SF, Mukamel S, Garavelli M (2015) Probing deactivation pathways of DNA nucleobases by two-dimensional electronic spectroscopy: first principles simulations. Faraday Disc 177:345–362

    Article  CAS  Google Scholar 

  102. Nenov A, Giussani A, Segarra-Martí J, Jaiswal VK, Rivalta I, Cerullo G, Mukamel S, Garavelli M (2015) Modeling the high-energy electronic state manifold of adenine: calibration for nonlinear electronic spectroscopy. J Chem Phys 142:212443

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Paper dedicated to the UNESCO International Year of Light and Light-based Technologies (IYL 2015). TCA special Issue on Health & Energy from the Sun: a Computational Perspective. This research was supported by Projects CTQ2014-58624-P of the Spanish MINECO/FEDER and GV2015-057 of the Generalitat Valenciana. D.R.-S. thanks the “Juan de la Cierva” program of the Spanish MINECO (Ref. JCI-2012-13431). A.F.-M. thanks BES-2011-048326 FPI grant (MINECO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Roca-Sanjuán.

Additional information

Published as part of the special collection of articles “Health and Energy from the Sun”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francés-Monerris, A., Segarra-Martí, J., Merchán, M. et al. Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer. Theor Chem Acc 135, 31 (2016). https://doi.org/10.1007/s00214-015-1762-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1762-z

Keywords

Navigation