Skip to main content
Log in

Theoretical investigation of molecular excited states in polar organic monolayers via an efficient embedding approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, we present a theoretical investigation on excitation energies of organic molecules embedded in a periodic monolayer. We use the self-consistent periodic-image-charges embedding approach, which takes into account all the electrostatic effects, to compute the perturbation on molecular orbitals and eigenvalues due to the presence of the surrounding periodic array of polar molecules. We considered vanadyl naphthalocyanine, mercaptobiphenyl, and tris-(8-hydroxyquinoline) aluminum (AlQ3) at different coverages, and excitation energies computed using the time-dependent density-functional theory. We found a significant (0.1–0.2 eV) red- or blue-shift of the energies for different excited states, due to the different coupling of the molecule with the polarization field of the two-dimensional crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ulman A (1996) Chem Rev 96:1533

    Article  CAS  Google Scholar 

  2. Arima V, Fabiano E, Blyth RIR, Della Sala F, Matino F, Thompson J, Cingolani R, Rinaldi R (2004) J Am Chem Soc 126:16951

    Article  CAS  Google Scholar 

  3. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103

    Article  CAS  Google Scholar 

  4. Heimel G, Romaner L, Zojer E, Brédas JL (2008) Acc. Chem. Res. 41:721

    Article  CAS  Google Scholar 

  5. Tao N (2006) Nat Nanotech 1:173

    Article  CAS  Google Scholar 

  6. Sushko ML, Shluger AL (2009) Adv Mater 21:1111

    Article  CAS  Google Scholar 

  7. Romaner L, Heimel G, Ambrosch-Draxl C, Zojer E (2008) Adv Funct Mater 18:3999

    Article  CAS  Google Scholar 

  8. Rusu PC, Brocks G (2006) J Phys Chem B 110:22628

    Article  CAS  Google Scholar 

  9. Rusu PC, Brocks G (2006) Phys Rev B 74:073414

    Article  Google Scholar 

  10. Heimel G, Romaner L, Zojer E, Brédas JL (2006) NanoLetters 7:932

    Article  Google Scholar 

  11. Piacenza M, D’Agostino S, Fabiano E, Della Sala F (2009) Phys Rev B 80:153101

    Article  Google Scholar 

  12. Topping J (1927) Proc R Soc Lond Ser A 114:67

    Article  Google Scholar 

  13. Bagchi A, Barrera RG, Fuchs R (1982) Phys Rev B 25:7086

    Article  CAS  Google Scholar 

  14. Maschhoff BL, Cowin JP (1994) J Chem Phys 101:8138

    Article  CAS  Google Scholar 

  15. Bengtsson L (1999) Phys Rev B 59:12301

    Article  CAS  Google Scholar 

  16. Romaner L, Heimel G, Zojer E (2008) Phys Rev B 77:045113

    Article  Google Scholar 

  17. Johnson ER, Mori-Sánchez P, Cohen AJ, Yang W (2008) J Chem Phys 129:204112

    Article  Google Scholar 

  18. Fabiano E, Della Sala F (2007) J Chem Phys 126:214102

    Article  CAS  Google Scholar 

  19. Reimers JR, Cai ZL, Bili A, Hush NS (2003) Ann N Y Acad Sci 1006:235

    Article  CAS  Google Scholar 

  20. Fuentealba P, Simn-Manso Y (1997) J Phys Chem A 101:4231

    Article  CAS  Google Scholar 

  21. Kümmel S, Kronik L, Perdew JP (2004) Phys Rev Lett 93:213002

    Article  Google Scholar 

  22. Della Sala F, Fabiano E, Laricchia S, D’Agostino S, Piacenza M (2010) Int J Quant Chem 110:2162

    Article  CAS  Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  24. Della Sala F, Görling A (2001) J Chem Phys 115:5718

    Article  CAS  Google Scholar 

  25. Kümmel S, Kronik L (2008) Rev Mod Phys 80:3

    Article  Google Scholar 

  26. Della Sala F (2010) In: Springborg M (eds) Chemical modelling: applications and theory, vol 7, Royal Society of Chemistry, Cambridge, pp 115–161

  27. Khait YG, Hoffmann MR (2010) J Chem Phys 133:044107

    Article  Google Scholar 

  28. Kamiński R, Schmøkel MS, Coppens P (2010) J Phys Chem Lett 1:2349

    Article  Google Scholar 

  29. Steele MP, Blumenfeld ML, Monti OLA (2010) J Phys Chem Lett 1:2011

    Article  CAS  Google Scholar 

  30. Sariciftci, NS (eds) (1997) Primary photoexcitations in conjugated polymers: molecular exciton versus semiconductor band model. World Scientific, Singapore

    Google Scholar 

  31. Silbey R (1976) Ann Rev Phys Chem 27:203

    Article  CAS  Google Scholar 

  32. Gigli G, Della Sala F, Lomascolo M, Anni M, Barbarella G, Di Carlo A, Lugli P, Cingolani R (2001) Phys Rev Lett 86:167

    Article  CAS  Google Scholar 

  33. Yamagata H, Norton J, Hontz E, Olivier Y, Beljonne D, Brédas JL, Silbey RJ, Spano FC (2011) J Chem Phys 134:204703

    Article  CAS  Google Scholar 

  34. Davidov A (1971) Theory of molecular excitons. Plenum Press, London

    Google Scholar 

  35. Müller M, Le Moal E, Scholz R, Sokolowski M (2011) Phys Rev B 83:241203

    Article  Google Scholar 

  36. Steele MP, Blumenfeld ML, Monti OLA (2010) J Chem Phys 133:124701

    Article  Google Scholar 

  37. Hochstrasser RM (1962) Rev Mod Phys 34:531

    Article  CAS  Google Scholar 

  38. Blumenfeld ML, Steele MP, Monti OLA (2010) J Phys Chem Lett 1:145

    Article  CAS  Google Scholar 

  39. Heimel G, Romaner L, Brédas JL, Zojer E (2006) Phys Rev Lett 96:196806

    Article  Google Scholar 

  40. Fabiano E, Piacenza M, D’Agostino S, Della Sala F (2009) J Chem Phys 131:234101

    Article  CAS  Google Scholar 

  41. Yanagisawa S, Lee K, Morikawa Y (2008) J Chem Phys 128:244704

    Article  Google Scholar 

  42. Monti OLA, Steele MP (2010) Phys Chem Chem Phys 12:12390

    Article  CAS  Google Scholar 

  43. Sirringhaus H, Tessler N, Friend RH (1998) Science 12:1741

    Article  Google Scholar 

  44. Granström M, Petritsch K, Arias AC, Lux A, Andersson MR, Friend RH (1998) Nature 395:257

    Article  Google Scholar 

  45. Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ (1992) Nature 357:477

    Article  CAS  Google Scholar 

  46. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Santos DAD, Brdas JL, Lögdlund M, Salaneck WR (1999) Nature 397:121

    Article  CAS  Google Scholar 

  47. Voss D (2000) Nature 407:442

    Article  CAS  Google Scholar 

  48. Burow AM, Sierka M, Döbler J, Sauer J (2009) J Chem Phys 130:174710

    Article  Google Scholar 

  49. Cortona P (1991) Phys Rev B 44:8454

    Article  Google Scholar 

  50. Laricchia S, Fabiano E, Della Sala F (2010) J Chem Phys 133:164111

    Article  CAS  Google Scholar 

  51. Cornil D, Olivier Y, Geskin V, Cornil J (2007) Adv Func Mater 17:1143

    Article  CAS  Google Scholar 

  52. Norton JE, Brédas JL (2008) J Am Chem Soc 130:12377

    Article  CAS  Google Scholar 

  53. Tsiper EV, Soos ZG (2001) Phys Rev B 64:195124

    Article  Google Scholar 

  54. Casida ME (1995) Recent advances in density functional methods, vol 1. World Scientific, Singapore

    Google Scholar 

  55. Neugebauer J (2010) Phys Rep 489:1

    Article  CAS  Google Scholar 

  56. Neugebauer J (2007) J Chem Phys 126:134116

    Article  Google Scholar 

  57. Casida ME, Wesolowski TA (2004) Int J Quant Chem 96:577

    Article  CAS  Google Scholar 

  58. Constantin LA, Fabiano E, Laricchia S, Della Sala F (2011) Phys Rev Lett 106:186406

    Article  Google Scholar 

  59. Weigend F, Furche F, Ahlrichs R (2003) J Chem Phys 119:12753

    Article  CAS  Google Scholar 

  60. Weigned F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  Google Scholar 

  61. Cheng ZH, Gao L, Deng ZT, Jiang N, Liu Q, Shi DX, Du SX, Guo HM, Gao HJ (2007) J Phys Chem C 111:9240

    Article  CAS  Google Scholar 

  62. TURBOMOLE V6.1 2009: a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com

  63. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  64. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  65. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  66. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  67. Hättig C, Weigend F (2000) J Chem Phys 113:5154

    Article  Google Scholar 

  68. Köhn A, Hättig C (2003) J Chem Phys 119:5021

    Article  Google Scholar 

  69. Dunning TH Jr (1989) J Chem Phys 90:1008

    Article  Google Scholar 

  70. Terentjevs A, Steele MP, Blumfeld ML, Ilyas N, Kelly LL, Fabiano E, Monti OLA, Della Sala F (2011) J Phys Chem C 115:21128

    Article  CAS  Google Scholar 

  71. Brinkmann M, Gadret G, Muccini M, Taliani M, Masciocchi N, Sironi A (2000) J Am Chem Soc 122:5147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank TURBOMOLE GmbH for providing us with the TURBOMOLE program package, and M. Margarito for technical support. This work was funded by the European Research Council (ERC) Starting Grant FP7 Project DEDOM, Grant Agreement No. 207441.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Della Sala.

Additional information

Dedicated to Professor Vincenzo Barone and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terentjevs, A., Fabiano, E. & Della Sala, F. Theoretical investigation of molecular excited states in polar organic monolayers via an efficient embedding approach. Theor Chem Acc 131, 1154 (2012). https://doi.org/10.1007/s00214-012-1154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1154-6

Keywords

Navigation