Skip to main content

Advertisement

Log in

Vortioxetine administration attenuates cognitive and synaptic deficits in 5×FAD mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objective

Vortioxetine has been reported to exhibit a variety of neurobiological functions and neuroprotective effects. In the present study, we aimed to investigate the effects of vortioxetine on cognitive performance in a transgenic mouse model of Alzheimer’s disease (AD).

Methods

We administered vortioxetine (10 mg/kg, i.p., every day, for approximately 6 weeks), which acts on multiple 5-serotonin (5-HT) receptors, to 3.5-month-old 5×FAD mice. Subsequently, we used the open field (OF) test to detect anxiety-like behavior in the mice. The novel object recognition (NOR) test and Morris water maze (MWM) were used to assess the cognitive states of the 5×FAD mice. We also measured the levels of insoluble amyloid plaques and soluble β-amyloid (Aβ) plaques. Finally, we explored the expression levels of postsynaptic density protein 95 (PSD95), synaptophysin (SYP), and synaptotagmin-1 (SYT1) in the hippocampus of the mice.

Results

The administration of vortioxetine effectively reversed the reduction in anxiety-type behaviors in 5×FAD mice and improved the impairment in recognition memory and spatial reference memory. However, we did not find that vortioxetine decreased or delayed the formation of amyloid plaques or Aβ. Interestingly, we found a significant increase in the expression levels of PSD95, SYP, and SYT1 in the 5×FAD mice after vortioxetine treatment compared with the control group.

Conclusion

These results demonstrate that vortioxetine may improve cognitive impairment in 5×FAD mice. The role in cognitive improvement may be related to the beneficial effects of vortioxetine on synaptic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509

    Article  Google Scholar 

  • Alzheimer's Disease International. World Alzheimer's Report 2015: The impact of dementia. https://www.alz.co.uk/research/world-report-2015 (2015).

  • Braun D, Feinstein DL (2019) The locus coeruleus neuroprotective drug vindeburnol normalizes behavior in the 5×FAD transgenic mouse model of Alzheimer’s disease. Brain Res 1702:29–37

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Gaarn K, Waller JA et al (2016) Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus. Eur Neuropsychopharmacol 26:234–245

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Danladi J, Ardalan M et al (2018) A critical role of mitochondria in BDNF-associated synaptic plasticity after one-week vortioxetine treatment. Int J Neuropsychopharmacol 21:603–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens B, Kurdakova A, Baches S et al (2015) Gene dosage dependent aggravation of the neurological phenotype in the 5×FAD mouse model of Alzheimer’s disease. J Alzheimers Dis 45:1223–1236

    Article  CAS  Google Scholar 

  • Cumbo E, Cumbo S, Torregrossa S, Migliore D (2019) Treatment effects of Vortioxetine on cognitive functions in mild Alzheimer’s disease patients with depressive symptoms: a 12 month, open-label, observational study. J Prev Alzheimers Dis 6:192–197

    CAS  PubMed  Google Scholar 

  • Dale E, Zhang H, Leiser SC, Xiao Y, Lu D, Yang CR, Plath N, Sanchez C (2014) Vortioxetine disinhibits pyramidal cell function and enhances synaptic plasticity in the rat hippocampus. J Psychopharmacol 28:891–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Pins B, Cifuentes-Díaz C, Thamila Farah A et al (2019) Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5×FAD mouse model of Alzheimer disease. J Neurosci 39:2441–2458

    PubMed  PubMed Central  Google Scholar 

  • Deacon RMJ (2006) Housing, husbandry and handling of rodents for behavioral experiments. Nat Protoc 1:936–946

    Article  PubMed  Google Scholar 

  • Gaarn K, Jensen JB, Sanchez C, Pehrson AL (2014) Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT 1A receptor agonism and 5-HT 3 receptor antagonism. Eur Neuropsychopharmacol 24:160–171

    Article  CAS  Google Scholar 

  • Gaarn K, Kaastrup H, Sanchez C et al (2016) A single dose of vortioxetine, but not ketamine or fluoxetine, increases plasticity-related gene expression in the rat frontal cortex. Eur J Pharmacol 786:29–35

    Article  CAS  Google Scholar 

  • Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Südhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727

    Article  CAS  PubMed  Google Scholar 

  • Giralt A, de Pins B, Cifuentes-Díaz C, López-Molina L, Farah AT, Tible M, Deramecourt V, Arold ST, Ginés S, Hugon J, Girault JA (2018) PTK2B/Pyk2 overexpression improves a mouse model of Alzheimer’s disease. Exp Neurol 307:62–73

    Article  CAS  PubMed  Google Scholar 

  • Grinan-Ferre C, Sarroca S, Ivanova A et al (2016) Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5×FAD mice. Aging 8:664–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  • Harrison JE, Lophaven S, Olsen CK (2016) Which cognitive domains are improved by treatment with vortioxetine? Int J Neuropsychopharmacol 19:1–6

    Article  Google Scholar 

  • Hongpaisan J, Sun M, Alkon DL (2011) PKC epsilon activation prevents synaptic loss , Aβ elevation , and cognitive deficits in Alzheimer’s disease transgenic mice. J Neurosci 31:630–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hüttenrauch M, Walter S, Kaufmann M, Weggen S, Wirths O (2017) Limited effects of prolonged environmental enrichment on the pathology of 5×FAD mice. Mol Neurobiol 54:6542–6555

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jawhar S, Trawicka A, Jenneckens C et al (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5×FAD mouse model of Alzheimer’ s disease. Neurobiol Aging 33:196.e29–196.e40

    Article  CAS  Google Scholar 

  • Jensen JB, Gaarn K, Song D et al (2014) Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5-HT depletion in rats: evidence for direct 5-HT receptor modulation. Eur Neuropsychopharmacol 24:148–159

    Article  CAS  PubMed  Google Scholar 

  • Katona C, Hansen T, Kurre C (2010) A randomized, double-blind, placebo-controlled, duloxetine-referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder. Int Clin Psychopharmacol 27:215–223

    Article  Google Scholar 

  • Leger M, Quiedeville A, Bouet V et al (2013) Object recognition test in mice. Nat Protoc 8:2531–2537

    Article  CAS  PubMed  Google Scholar 

  • Leiser SC, Li Y, Pehrson AL, Dale E, Smagin G, Sanchez C (2015) Serotonergic regulation of prefrontal cortical circuitries involved in cognitive processing: a review of individual 5-HT receptor mechanisms and concerted effects of 5-HT receptors exemplified by the multimodal antidepressant vortioxetine. ACS Chem Neurosci 6:970–986

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Abdourahman A, Tamm JA et al (2015) Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice. Pharmacol Biochem Behav 135:70–82

    Article  CAS  PubMed  Google Scholar 

  • Mahableshwarkar AR, Zajecka J, Jacobson W, Chen Y, Keefe RS (2015) A randomized, placebo-controlled, active-reference, double-blind, flexible-dose study of the efficacy of vortioxetine on cognitive function in major depressive disorder. Neuropsychopharmacology 40:2025–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcello E, Caraci F (2019) Fluoxetine and Vortioxetine reverse depressive-like phenotype and memory deficits induced by Aβ1-42 oligomers in mice: a key role of transforming growth factor- β 1. Front Pharmacol 10:1–14

    Article  CAS  Google Scholar 

  • Masters CL, Bateman R, Blennow K et al (2015) Alzheimer’s disease. Nat Rev Dis Primers 1:1–18

    Article  Google Scholar 

  • McIntyre RS, Lophaven S, Olsen CK (2014) A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int J Neuropsychopharmacol 17:1557–1567

    Article  CAS  PubMed  Google Scholar 

  • Mørk A, Montezinho LP, Miller S et al (2013) Vortioxetine ( Lu AA21004 ), a novel multimodal antidepressant, enhances memory in rats. Pharmacol Biochem Behav 105:41–50

    Article  CAS  PubMed  Google Scholar 

  • Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, van Eldik L, Berry R, Vassar R (2006) Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Öhrfelt A, Brinkmalm A, Dumurgier J et al (2016) The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer’s disease. Alzheimers Res Ther 8:1–10

    Article  CAS  Google Scholar 

  • Pehrson AL, Cremers T, Bétry C, van der Hart M, Jørgensen L, Madsen M, Haddjeri N, Ebert B, Sanchez C (2013) Lu AA21004, a novel multimodal antidepressant, produces regionally selective increases of multiple neurotransmitters — a rat microdialysis and electrophysiology study. Eur Neuropsychopharmacol 23:133–145

    Article  CAS  PubMed  Google Scholar 

  • Pehrson AL, Leiser SC, Gulinello M, Dale E, Li Y, Waller JA, Sanchez C (2015) Treatment of cognitive dysfunction in major depressive disorder — a review of the preclinical evidence for efficacy of selective serotonin reuptake inhibitors, serotonin – norepinephrine reuptake inhibitors and the multimodal-acting antidepressant vort. Eur J Pharmacol 753:19–31

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Asin KE, Artigas F (2015) Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther 145:43–57

    Article  CAS  PubMed  Google Scholar 

  • Schatzberg AF, Blier P, Culpepper L, Jain R, Papakostas GI, Thase ME (2014) An overview of vortioxetine. J Clin Psychiatry 75:1411–1418

    Article  PubMed  Google Scholar 

  • Schneider F, Baldauf K, Wetzel W et al (2015) Effects of methylphenidate on the behavior of male 5×FAD mice. Pharmacol Biochem Behav 128:68–77

    Article  CAS  PubMed  Google Scholar 

  • Shao CY, Mirra SS, Sigurdsson EM (2011) Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced A b and tau pathology in transgenic mouse models of Alzheimer’s disease. Acta Neuropathol 122:285–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith J, Browning M, Conen S et al (2017) Vortioxetine reduces BOLD signal during performance of the N-back working memory task: a randomised neuroimaging trial in remitted depressed patients and healthy controls. Mol Psychiatry 23:1127–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Südhof TC, Rizo J (1996) Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron 17:379–388

    Article  PubMed  Google Scholar 

  • Tian Y, Yang C, Shang S et al (2017) Loss of FMRP impaired hippocampal long-term plasticity and spatial learning in rats. Front Mol Neurosci 10:1–14

    Google Scholar 

  • Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, Devidze N, Masliah E, Kreitzer AC, Mody I, Mucke L, Palop JJ (2012) Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149:708–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieta E, Sluth LB, Olsen CK (2018) The effects of vortioxetine on cognitive dysfunction in patients with inadequate response to current antidepressants in major depressive disorder: a short-term, randomized, double-blind, exploratory study versus escitalopram. J Affect Disord 227:803–809

    Article  CAS  PubMed  Google Scholar 

  • Vorhees C, Williams M (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace A, Pehrson AL, Morilak DA (2014) Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats. Int J Neuropsychopharmacol 17:1695–1706

    Article  CAS  PubMed  Google Scholar 

  • Waller JA, Chen F, Connie S (2016) Vortioxetine promotes maturation of dendritic spines in vitro: a comparative study in hippocampal cultures. Neuropharmacology 103:143–154

    Article  CAS  PubMed  Google Scholar 

  • Yoo BC, Cairns N, Fountoulakis M, Lubec G (2001) Synaptosomal proteins, beta-soluble N-ethylmaleimide-sensitive factor attachment protein (beta-SNAP), gamma-SNAP and synaptotagmin I in brain of patients with down syndrome and Alzheimer’s disease. Dement Geriatr Cogn Disord 12:219–225

    Article  CAS  PubMed  Google Scholar 

  • Yuki D, Sugiura Y, Zaima N et al (2014) DHA-PC and PSD-95 decrease after loss of synaptophysin and before neuronal loss in patients with Alzheimer’s disease. Sci Rep 4:1–9

    Google Scholar 

Download references

Acknowledgments

We thank the National Center for Protein Sciences at Peking University in Beijing, China, for assisting us with the image acquisition and Li-Qin Fu for helping us with the image optimization.

Funding

This work was supported in part by the National Key R&D Program of China (No.2018YFC1314200), Beijing Municipal Science &Technology Commission (No. Z161100002616021), and National Key Research and Development Program of China (No. 2017YFC1311100).

Author information

Authors and Affiliations

Authors

Contributions

L.X.J., G.D.H., H.W., and X.Y. designed the experiments. L.X.J. and G.D.H. performed the experiments. L.X.J. and S.F. analyzed and interpreted the data. H.W., C.Z., and X.Y. commented on the manuscript. L.X.J. and X.Y. wrote the manuscript.

Corresponding authors

Correspondence to Huali Wang, Chen Zhang or Xin Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, LX., Huang, GD., Su, F. et al. Vortioxetine administration attenuates cognitive and synaptic deficits in 5×FAD mice. Psychopharmacology 237, 1233–1243 (2020). https://doi.org/10.1007/s00213-020-05452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-020-05452-9

Keywords

Navigation