
Multivariate Analysis of Subjective Responses to d-
amphetamine In Healthy Volunteers Finds Novel Genetic 
Pathway Associations

Haley L. Yarosh, PhD1,2, Shashwath A. Meda, MS1, Harriet de Wit, PhD5, Amy B. Hart, B.Sc.
4, and Godfrey D. Pearlson, MD1,2,3

1Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, 
Connecticut

2Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut

3Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut

4Department of Human Genetics, University of Chicago, Chicago, Illinois

5Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois

Abstract

Rationale—Researchers studying behavioral and physiologic effects of d-amphetamine have 

explored individual response differences to the drug. Concurrently, genome wide analyses have 

identified several single nucleotide polymorphisms (SNPs) associated with these traits. Univariate 

methods can identify SNPs associated with behavioral and physiological traits, but multivariate 

analyses allow identification of clusters of related biologically relevant SNPs and behavioral 

components.

Objectives—To identify clusters of related biologically relevant SNPs and behavioral 

components in the responses of healthy individuals to d-amphetamine using multivariate analysis.

Methods—Individuals (N=375) without substance abuse histories completed surveys and 

detailed cardiovascular monitoring during randomized, blinded sessions: d-amphetamine (10mg, 

20mg), placebo. We applied parallel-independent component analysis (Para-ICA) to data 

previously analyzed with univariate approaches, revealing new associations between genes and 

behavioral responses to d-amphetamine.

Results—Three significantly associated (p<.001) phenotype-genotype pairs emerged. The first 

component included physiologic measures of systolic and diastolic blood pressure (BP) and mean 

arterial pressure (MAP) along with SNPs in calcium and glutamatergic signaling pathways. The 

second associated components included the ‘Anger’ items from the Profile of Mood States 

(POMS) questionnaire and the Marijuana effects from the Addiction Research Center Inventory 

Correspondence: Shashwath Meda, PhD Olin Neuropsychiatric Research Center 200 Retreat Avenue Hartford CT 06102 Phone: 860 
545 7800 Fax: 860 545 7769 Shashwath.Meda@hhchealth.org. 

Disclosure Statement
All authors have read and approved the manuscript, and none have any conflicts of interest. Dr. de Wit received a research grant from 
Unilever for a project unrelated to this study.

HHS Public Access
Author manuscript
Psychopharmacology (Berl). Author manuscript; available in PMC 2016 August 01.

Published in final edited form as:
Psychopharmacology (Berl). 2015 August ; 232(15): 2781–2794. doi:10.1007/s00213-015-3914-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Cuyas, Verdejo-Garcia et al.), with enriched genetic pathways involved in Cardiomyopathy and 

MAPK signaling. The final pair included ‘Anxious’, ‘Fatigue’, and ‘Confusion’ items from the 

POMS questionnaire, plus functional pathways related to cardiac muscle contraction and 

cardiomyopathy.

Conclusions—Multifactorial genetic networks related to calcium signaling, glutamatergic and 

dopaminergic synapse function and amphetamine addiction appear to mediate common behavioral 

and cardiovascular responses to d-amphetamine.
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Introduction

Thus far, association studies of amphetamine response in healthy individuals have focused 

on candidate genes, employing univariate statistical approaches (Mattay, Goldberg et al. 

2003, Wardle, Hart et al. 2013), which are typically limited by the issue of multiple 

comparisons, and diminish statistical power to detect subtle but important genetic effects. 

Thus, in the current study, we applied a novel, multivariate strategy based on parallel-

independent component analysis (Para-ICA: see methods) to a previously analyzed data set.

Para-ICA is a multivariate statistical method that maximizes ‘cost functions’ both within and 

between complex feature sets (e.g. voxels in MRI scans and gene interactions). This reveals 

novel, biologically relevant associations that might otherwise not be detected due to small 

effect sizes and modest-sized sample sets (Liu, Pearlson et al. 2009, Meda, Narayanan et al. 

2012). In data with a large number of characteristics, Para-ICA excels at identifying and 

comparing the most relevant features. Para-ICA also makes more assumptions about noise, 

thus increasing robustness compared to previous methods.

The current reanalysis used subjective and physiological response data to d-amphetamine in 

healthy individuals, and explored how these might be influenced by the genome of each 

participant. It is appropriate to apply Para-ICA to investigate relationships between complex 

behaviors and gene-gene interactions in this high dimensional data set.

D-amphetamine is a psychostimulant drug that acts acutely by blunting phasic dopamine 

release via agonist activity at D2 auto-receptors, and enhancing tonic availability of 

dopamine and norepinephrine by blocking reuptake via membrane transporters into nerve 

terminals (Greene, Kerr et al. 2008). Its effects include increased alertness/vigilance/arousal, 

energy, mood/motivation, attention/concentration and appetite suppression, and its side 

effects include hypertension, tachycardia, cardiac arrhythmias, cardiomyopathy, 

restlessness, dry mouth, and insomnia (Schep, Slaughter et al. 2010). Although 

amphetamine has therapeutic value for ADHD and treating fatigue, it also has the potential 

for abuse and dependence (Greene, Kerr et al. 2008).

There are individual differences in amphetamine response, and both the subjective response 

to acute amphetamine and amphetamine dependence are heritable (Crabbe, Jarvik et al. 

Yarosh et al. Page 2

Psychopharmacology (Berl). Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1983, Schilt, Koeter et al. 2009, Cherner, Bousman et al. 2010). Some of the genetic 

variation is related to drug metabolism: for example methamphetamine users exhibit 

differential neurocognitive deficits related to specific CYP2D6 drug metabolism-related 

alleles (Cherner, Bousman et al. 2010). Carriers of functional Catechol-O-methyltransferase 

(COMT) gene variants may show differential cognitive responses to acute d-amphetamine 

challenge (Mattay, Goldberg et al. 2003, Wardle, Hart et al. 2013), (Hamidovic, Dlugos et 

al. 2010). Although not directly related to drug challenges, individual differences in 

behavioral performance on executive and working memory tasks are also observed among 

polymorphism carriers of other genes relevant to dopaminergic function including MAOA, 

BDNF and DRD4 (Fan, Fossella et al. 2003, Hariri and Weinberger 2003, Herrmann, Walter 

et al. 2007). To understand these individual differences, some of which may affect drug 

abuse susceptibility, it is important to investigate the genetic and physiological basis for 

subjective drug response in the general population (de Wit and Phillips 2012).

Our analysis was performed on a previously published sample that used univariate 

approaches, using varying sample sizes (N=99 or 162), to focus on carefully-selected, 

hypothesis-based candidate genes: ADORA2A, SLC6A3, BDNF, SLC6A4, CSNK1E, 

SLC6A2, DRD2, FAAH, COMT, and OPRM1 (Hart, de Wit et al. 2013). Modest associations 

were reported, but these were difficult to replicate (Hart, de Wit et al. 2013). The authors 

also conducted a GWAS study in this population, with some modest findings (Hart, 

Engelhardt et al. 2012).

In the present analysis, we used an unsupervised multivariate approach to identify clusters of 

relevant interacting genes that were related in functional pathways to phenotypic 

components representing acute behavioral and physiologic response to d-amphetamine. 

Such genes could include those in processes previously associated with psychostimulant 

effects and/or dependence (Li, Mao et al. 2008), drug side effects (e.g. dry mouth, insomnia) 

as well as those related to drug metabolism and excretion, blood-brain barrier permeability, 

cardiovascular responsiveness, plus behaviorally-relevant neurotransmitters, receptors and 

their associated synthetic and degrading enzymes (e.g. dopamine, glutamate, 

norepinephrine). For the analysis, we generated change-from-pre-capsule baseline scores 

after placebo or drug to assess genotype-phenotype relationships. Several of the subjective 

scales had overlapping content, and some measures of somatic effects, e.g. heart rate, might 

influence subjective reports. Therefore, we expected some crossover between SNP 

components associated with behavioral and with physiological components.

The Para-ICA multivariate analysis used here provides a sensitive and powerful alternative 

to traditional univariate analyses using single SNPs and single outcome measures. It is more 

powerful than univariate analysis because it examines clusters of related individual 

phenotypic measures in relation to clusters of related SNPs. The clustering of phenotypic 

measures is empirically derived from the data, and the SNPs are interpreted based on a large 

body of knowledge about genes involved with known biological function. Para-ICA uses 

these two composite clusters to reveal novel, biologically relevant associations that might 

otherwise not be detected. Here, we applied this robust analysis to an existing data set with 

acute responses to amphetamine in human volunteers.
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Materials and Methods

Participants

Study sample and data collection methods are detailed in previous publications (Hart, 

Engelhardt et al. 2012). Subjects were recruited and screened via modified Structured 

Clinical Interview for DSM-IV (SCID) (First November 2002) psychiatric symptom 

checklist (SCL-90) (Derogatis 1977) electrocardiogram, physical examination, self-reported 

health and drug use history. Subjects were excluded if they were employed with night shift 

work, significant medical or psychiatric conditions, if they smoked more than 3 cigarettes/

day, consumed more than 3 cups of coffee/day, or tested positive for amphetamine, cocaine, 

opiates, phencyclidine (PCP), or marijuana (measured by urine toxicology: Ontrak TesTstik, 

Roche Diagnostic Systems Inc., Somerville, NJ).

Behavioral Data Collection

486 behavioral variables from the Drug Effects Questionnaire (DEQ; (Chait, Uhlenhuth et 

al. 1985), the Addiction Research Center Inventory (Martin, Sloan et al. 1971, Cuyas, 

Verdejo-Garcia et al.) and the Profile of Mood States (POMS; (Johanson and Uhlenhuth 

1980) questionnaire were collected in addition to sex, age, education, body mass index, 

weekly alcohol and caffeine use as well as monthly marijuana use. These included baseline 

responses to placebo, 10mg d-amphetamine, and 20mg d-amphetamine as well as responses 

at five additional time points (30, 60, 90, 150 and 180 minutes post-drug). In order to 

understand changes in these variables compared to placebo, we grouped time points 2–6 into 

a single measure termed the ‘response measure’. We then created four change measures 

(CM): 1CM= 10mg baseline response - placebo baseline response 2CM= 20mg baseline 

response - placebo baseline response 3CM= 10mg response measure - placebo response 

measure 4CM= 20mg response measure - placebo response measure. Thus, 100 final 

behavioral variables were created for further analysis (Supplementary Figure I).

Genetic Data Collection

DNA was extracted from blood at the General Clinical Research Center at the University of 

Chicago. Genotyping was performed using the Affymetrix 6.0 array at the Functional 

Genomics Core Facility (Vanderbilt University, Memphis, TN, USA).

Genetic Data Processing

Prior to Para-ICA, genotyped SNPs underwent three pre-processing stages. First, quality 

control parameters were employed to discard data unsuitable for further analysis. Samples 

(both subjects and SNPs) were checked for missing data and those with missing call rates 

(>10%) were excluded. 375 individuals remained in the sample after excluding six 

individuals during quality control. Following this, all uninformative SNPs (constant 

variance) were excluded. SNPs were then checked for minor allele frequency (MAF); SNP 

variants with MAFs <0.1 were excluded. SNPs in linkage disequilibrium (r2 > 0.5) (in block 

sizes of 100 kb) were removed. Finally, SNPs were checked for Hardy–Weinberg 

equilibrium set at a threshold of p < 1×10−5. The above analyses were performed using 

PLINK (Purcell, Neale et al. 2007). Finally, a principal component analysis (PCA) was run 
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using custom Matlab scripts and the variance from the top 3 components were regressed out 

of the data to account for population stratification using an approach similar to that 

implemented in EIGENSTRAT (Li and Yu 2008). All SNPs (N =178,746) were then carried 

over to the next processing stage.

In order to improve interpretation we biologically prioritized SNPs to only those contained 

within genes in KEGG database (Mootha, Lindgren et al. 2003, Kanehisa, Goto et al. 2004, 

Subramanian, Tamayo et al. 2005). In order to do this, we first derived genetic annotations 

for SNPs from the current dataset (conservatively) by using the Genome Variation Server 

(http://gvs.gs.washington.edu/GVSBatch137/) and restricting to SNPs within host genes (i.e. 

no flanking genes were used for SNP annotation). We then downloaded the complete list of 

KEGG genes from the molecular signatures database MSigDB (http://

www.broadinstitute.org/gsea/msigdb/collections.jsp) and limited our analysis to only those 

that overlapped with the currently genotyped sample. This produced a biologically enriched 

SNP set of N=(13,751) that was used as input for the para-ICA analyses.

Parallel Independent Component Analysis

Association Mapping—The number of genetic components in the current study was 

estimated to be 6 and the number of components estimated for the behavioral networks was 

13. Component estimation was data-driven using the standard minimum description length 

(MDL) criteria (Rissanen 1978).

To investigate associations between genotype and phenotype features, Para-ICA was 

implemented (See figure I) using the Fusion ICA Toolbox v2.0a; http://icatb.sourceforge.net 

in Matlab 7.0 and in accordance with previously reported results (Meda, Narayanan et al. 

2012). Para-ICA was designed for multimodal processing that extracts components using an 

entropy term based on information theory to maximize independence, and enhances the 

interconnection by maximizing the linkage function in a joint estimation process (Calhoun, 

Liu et al. 2009). The goal of para-ICA was three-fold: a) run an ICA to extract distinct linear 

combinations of behavioral data (covarying phenotypic networks across subjects), b) 

simultaneously run another ICA to extract distinct, linear combinations of SNP data 

(covarying genetic networks across subjects) and c) maximize correlations between the 

derived networks from steps a and b. This process resulted in a number of components for 

each feature set that are variably expressed across subjects and quantified by a subject-level 

loading coefficient for each data type (See figure 1). The loading parameters from para-ICA 

represent the weight of the overall component for each subject (Calhoun, Adali et al. 2001, 

Schurz, Radua et al.). In para-ICA the correlation values between these loading parameters 

across the two feature sets are continuously updated and maximized, until a stopping 

criterion is reached. Comprehensive mathematical details for this methodology are also 

discussed in prior publications (Liu, Demirci et al. 2008).

In order to correct for multiple comparisons in resulting behavioral/genetic correlation 

values, Bonferroni correction was applied based on 13 (phenotype components)×6 (genetic 

components)=78 comparisons yielding a corrected p value threshold of 0.05/78 = 0.00064. 

Once significant phenotype-genotype associations were identified, the corresponding 

phenotype and genotype networks were thresholded at a supra level |Z|>2.5 to derive 
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significantly contributing elements from each feature set. SNPs/phenotypic variables 

surpassing this threshold were deemed to be contributing significantly to the overall signal 

of the corresponding component/network. Resulting significant genes were interpreted using 

a functional annotation tool, ConsensusPathDB-human (http://cpdb.molgen.mpg.de/) to 

visualize enriched biological networks that were associated with physiologic/behavioral 

responses identified within our multivariate framework. We selected KEGG from the 

pathway-based sets comparison option on this functional annotation tool.

Results

Overview

Participant demographics are detailed in previous publications (Hart, Engelhardt et al. 

2012). Response to d-Amphetamine increased all scales of the DEQ, ARCI, and all but one 

of the POMS scales, and in a separate sparse factor analysis their responses to factors of 

“euphoria”, “dysphoria” and “arousal” were dose-dependent (Engelhardt and Stephens 

2010).

The Para-ICA reanalysis identified three significant genotype-phenotype pairs after 

accounting for multiple comparisons using Bonferroni correction. The top 20 most 

significant genes from each of the genotype components G1, G2 and G3, their Z-scores and 

associated functional annotations are summarized in Table II. Enrichment of genes mapped 

to these individual SNPs yielded multiple significant pathways within the KEGG (Kanehisa 

and Goto 2000, Kanehisa, Goto et al. 2014) database. We report the top ten most significant 

pathways associated with each component in Table I.

Phenotypic behavioral responses are reported as change measures (CM), an average of all 

time points with baseline measures subtracted from this average. 1CM= 10mg baseline - 

placebo baseline 2CM= 20mg baseline - placebo baseline, 3CM= 10mg response measure - 

placebo response measure 4CM= 20mg response measure - placebo response measure.

Several functional pathways were enriched in all of our significant components, including 

dopaminergic (G1,G2,G3) and glutamatergic (G1,G2) signaling, consistent with the known 

mode of action of the drug. Interestingly, significant genes from our dataset (G1,G3) were 

also found to be over-represented in an ‘amphetamine addiction’ (not among top 10 

pathways) KEGG pathway. As summarized earlier, multiple highly-ranked genes in all three 

SNP components have been linked to psychostimulant use/dependence, including NRCAM 

in G1 (Ishiguro, Liu et al. 2006) and CREB5 in G2 (a modulator of CART), as well as ACTB 

in G3, GABRG3 in G2 and NCAM2 in G1.

Phenotype 1-Genotype 1 Association

The first phenotype component P1 derived by Para-ICA consisted of the physiologic 

measures of 3CM systolic blood pressure (BP), 3CM and 4CM measures of BP, and both 

3CM and 4CM measures of mean arterial pressure (MAP). This component was negatively 

correlated to the first genetic component (G1; r=−.267, p=2.01e-007) (Table II) that 

included 211 significant SNPs, (thresholded at Z=2.5). Pathway enrichment analysis 

indicated that G1 consisted of calcium signaling networks ‘calcium signaling pathway’ and 
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‘endocrine-regulated calcium reabsorption’, plus a ‘glutamatergic synapse’ network. The 

calcium signaling pathways contain SNPs associated with Ca channel subunits and function 

(CACNA1G, SLC8A3, SLC8A1), G-protein coupled receptor and downstream pathway genes 

(ADRA1A, PRKCB, ITPR1, ADCY2), and nicotinic cholinergic receptor genes (CHRNA7). 

The glutamatergic pathway genes within this set were related to glutamate receptors 

(GRIN2B, GRM1) and phospholipase C (PLCB1, PLCB2). Other KEGG processes included 

vascular smooth-muscle contraction (that contained alpha-adrenergic-related genes 

including ADRA1A), that are linked to amphetamine-mediated tachycardia and hypertension 

(Cruickshank and Dyer 2009), long-term depression, gap junction, circadian entrainment, 

salivary secretion (amphetamine causes dry mouth), amoebiasis (that contained genes 

relevant to the intestinal lining) and ‘pathways in cancer’. Networks named ‘dopaminergic 

synapse’, ‘cholinergic synapse’, ‘serotonergic synapse’ and ‘amphetamine addiction’ 

(GRIN2B, CREB5, PRKCB, CHP1, GNAS) also contributed to the G1 component, but were 

not in the top ten most significant pathways.

Phenotype 2-Genotype 2 Association

Our second most significantly correlated pair (P2-G2; r=−.236, p=4.52e-006) included 4CM 

measures of the ‘Anger’ variables from the POMS questionnaire and 3CM measures from 

the Marijuana component of the ARCI (ARCI-M) and 229 significant SNPs (thresholded at 

z=2.5, see Table II) that were enriched in pathways related to somatic drug responses and 

drug metabolism (not in top 10 pathways). Importantly, three of eleven questions chosen for 

ARCI-M overlap with the amphetamine sub-score. Of the non-overlapping questions, many 

describe effects related to salivary secretion and/or cardiovascular function, e.g. “My mouth 

seems very dry,” “I notice that my heart is beating faster.” G2 pathways included 

‘dopaminergic synapse’ (not among top 10 pathways), ‘hippocampal signaling’ (not among 

top 10 pathways), ‘various forms of cardiomyopathy, (hypertrophic, arrhythmogenic right 

ventricular and dilated), ‘adherens junction’ and ‘focal adhesion’ (not in top 10 pathways), 

‘PI3K-Akt signaling’, ‘salivary’ and ‘pancreatic secretion’ (not in top 10 pathways), ‘MAP-

kinase signaling’. Genes related to calcium channel regulation, vascular smooth muscle 

contraction and AMP-activated protein kinase were enriched in these pathways as well. 

Networks named ‘morphine addiction’ and ‘nicotine addiction’ also appeared to be 

significantly enriched but not among the top ten pathways for the G2 component. The top-

ranked gene in this component, CREB5, is a CART interactor (Kuhar, Jaworski et al. 2005) 

that has been associated with substance abuse, as well as another top gene GABRG3 (Table 

II). Amphetamine abuse has been linked to both acute and chronic cardiomyopathies 

(Greene, Kerr et al. 2008, Schep, Slaughter et al. 2010), and acute methamphetamine 

damages cardiomyocyte proteins (Turdi, Schamber et al. 2009) so the wide implication of 

related genes in G2 and G3 is unsurprising.

Phenotype 3-Genotype 3 Association

The third correlated pair P3-G3 (r=−.206, p=7.03e-005) was comprised of the ‘Anxious’, 

‘Fatigue’, and ‘Confusion’ items from POMS questionnaire. It was significantly correlated 

with genotype component G3, which included 208 significant SNPs (thresholded at Z=2.5) 

and was enriched for several functional pathways related to cardiovascular function. This 

included some of the same networks discussed in G1 and G2 (‘vascular smooth muscle 
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contraction’, ‘cardiac muscle contraction’, ‘arrhythmogenic right ventricular’, ‘dilated’ and 

‘hypertrophic cardiomyopathies’) (Table I). Additional enriched networks included ‘focal 

adhesion’, PI3k-Akt signaling’, ‘MAPK signaling pathway’, ‘calcium signaling pathway’, 

and like G1 and G2, ‘pathways in cancer’. The networks ‘amphetamine addiction’ and 

‘dopaminergic synapse’ (discussed above) also appeared in G3 but were not among the top 

10 pathways. The top SNP (ACTB) has been linked to methamphetamine-conditioned place 

preference (Shibasaki, Mizuno et al. 2011), and another top SNP (PRKCE) has been 

associated with substance use and cardiovascular stress (Nikpay, Seda et al. 2012).

We had hypothesized above that genes would be involved in functional pathways related to 

phenotypic components representing previously documented associations with acute 

behavioral and physiological responses to d-amphetamine. For the top- 20 ranked genes 

within each SNP network, this was true for 14 SNPs in component G1, and 16 in both G2 

and G3, (represented e.g. as gene name-Gx for a particular gene comprising one of the top 

20 in SNP component Gx) as follows:

Psychostimulant response: NFATC3-G1. Psychostimulant dependence/addiction 

vulnerability: NRCAM-G1 (Ishiguro, Liu et al. 2006, Richardson, Grkovic et al. 2006), 

CREB5-G2, GABRG3-G2, ACTB-G3, NCOR2-G3, PRKCE-G3. Drug metabolism and 

excretion: DPYD-G1. Blood-brain barrier permeability: CD44-G1. Cardiovascular 

responsiveness: NFATC3-G1, AP2A2-G1, SPTLC2-G2, RAB5A-G2, DHRS3-G2, SLC8A1-

G2, CACNA2D3-G2, ST6GALNAC3-G3. Vascular contractility/endothelium: PLCB2-G1, 

ITGA8-G2, COLEC12-G2, PRKCQ-G3, KCNMA1-G3, PIK3C2B-G3, PRKCE-G3. 

Behavior-relevant neurotransmitters- dopamine: PARK2-G1, RORA-G1, RORB-G3. 

Glutamate: NCAM2-G1, GABA: GABRG3-G2. Drug side effects - insomnia; RORA-G1, 

RORB-G3. General abused substance relevance e.g. cell adhesion processes (Ishiguro, Liu et 

al. 2006, Uhl, Drgon et al. 2008), NCAM2-G1, COL4A2-G2, ITGA6-G2. General brain 

development and/or neurotransmission: ST8SIA1-G1, ERBB4-G1, TXNDC5-G1, SPTLC2-

G2, PAK7-G2, GMDS-G2, BAIAP2-G2, ACTB-G3, ORC3-G3, MAPT-G3, WASF3-G3, 

B3GALTL-G3, KCNK10-G3, XYLT1-G3, DAPK1-G3.

Discussion

The current analysis used Para-ICA, a novel multivariate approach, to identify pairs of 

related genotype and phenotype characteristics derived from subjective and physiological 

responses to two d-amphetamine doses compared to placebo in healthy individuals. We 

demonstrate that this empirically derived approach is a useful method for examining 

complex behavioral and cardiovascular responses to drugs where multiple, presumably 

interacting genes are involved. More traditional approaches (such as GWAS) produce 

findings that have been hard to replicate (Hart, de Wit et al. 2013), and require very large 

samples to achieve statistical significance.

Our results suggest that commonalities in d-amphetamine response may in part be explained 

by gene polymorphisms in several previously identified drug addiction-relevant pathways, 

and gene clusters related to cardiovascular function. The most significant association pair 

was G1-P1. Gene network G1 was negatively correlated with P1, indicating that decreased 
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3CM systolic BP, 3CM and 4CM measures of diastolic BP, and 3CM and 4CM MAP 

measures of mean arterial pressure (MAP) associates with increased G1 loading scores. 

Similarly, G2-P2 and G3-P3 were negatively correlated.

Although P1 subsumed only cardiovascular responsiveness measures, whereas phenotypes 2 

and 3 contained exclusively behavioral self-report items, several of these latter subjective 

reports contained cardiovascular responsiveness items, (such as: “I noticed that my heart is 

beating faster”). In addition, many genes (such as those involved with many calcium and 

potassium channels, responsible for generating and conducting electrical impulses) are 

expressed both in brain and heart (Lu, McKinsey et al. 1999). This likely explains the 

mixture of SNPs belonging to genes identified with both cardiovascular and behavioral 

responses in all three gene components.

P1 comprised physiological drug response (HR, BP and MAP) and the corresponding G1 

contained pathways for ‘long-term depression’, ‘circadian entrainment’, calcium and 

glutamatergic signaling. G1’s component network contains an enriched pathway for the 

glutamatergic synapse, including genes coding for the ionotropic glutamate receptor 

(GRIN2B), and SLC1A1 encoding the excitatory aminoacid transporter 2 (EAAT3), required 

for removing glutamate from extracellular spaces. GRIN2B has been previously identified in 

inter-individual responses to the amphetamine MDMA via cognitive performance (Cuyas, 

Verdejo-Garcia et al. 2011).

Metabotropic glutamate receptor (mGLUR) genes (GRM1) are also represented in G1’s 

‘calcium signaling’, and ‘glutamatergic synapse’ pathways, consistent with glutamate 

receptor involvement in cognitive control and amphetamine processing. Both acute DA and 

glutamate effects in rat brain, and the alteration of long-term potentiation via glutamatergic 

tone and metabotropic glutamate receptors are crucial to acute responses to psychostimulant 

drugs and addiction (Zhang, Loonam et al. 2001), (Kalivas 2009). The ventral medial 

prefrontal cortex, with abundant glutamatergic transmission, is involved in modulating 

bradycardic/tachycardic reflexes (Ferreira-Junior, Fedoce et al. 2013). Cardiac vagal 

preganglionic neurons are also responsible for heart rate modulation, and receive 

glutamatergic signaling input (Hildreth and Goodchild 2010).

Of the top 20 genes in the G1 component (Table II), several have been previously linked 

strongly to neuronal development and addiction vulnerability (NRCAM (Ishiguro, Liu et al. 

2006), NCAM2 (McIntyre, Titlow et al. 2010), PRKG1 (Ishiguro, Liu et al. 2006, Uhl, 

Drgon et al. 2008)) or code for proteins affecting amphetamine metabolism (DPYD, PARK2, 

RORA, NFATC3, GRID2). For example, NRCAM knockout mice do not develop conditioned 

place preference for substances (amphetamine, cocaine, morphine,) that wild type mice do 

(Ishiguro, Liu et al. 2006).

Dopamine 1 receptor (D1R) agonists enhance stimulatory responses, and activate adenylyl 

cyclases, consistent with the high ranking of an adenylyl cyclase (ADCY2) gene in our G1 

and G2 components; the top gene for G2 (CREB5) codes for cAMP-responsive element 

binding.
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The ADCY family has been implicated in neural function and drug response (Procopio, 

Saba et al. 2013) as well as cardiac contractile response (Lipskaia, Defer et al. 2000). 

ADCY2 interacts downstream with phospholipase C (PLC) signaling cascades; represented 

in the enriched pathways of our G1 component (PLCB1, PLCB2). PLC hydrolyses 

phosphatidylinositol 4,5-biphosphate (PIP2) to create inositol 1,4,5-triphosphate receptor 

(IP3). The gene coding for IP3 receptor type 1 (ITPR1) is enriched in pathways of the G1 

and G2 component.

A recent GWAS report of comorbid depression and alcoholism subjects (from the 

Consortium on the Genetics of Alcoholism, COGA) reported clusters of potential risk-

conferring alleles similar to those described here (Edwards, Aliev et al. 2012) including 

glutamatergic genes (GRIN2C (Edwards, Aliev et al. 2012), GRIN2B (G1,G2), GRIN2A 

((Edwards, Aliev et al. 2012), G3), GRIA1 (Edwards, Aliev et al.), GRIA4 (Edwards, Aliev 

et al.), and GRM1 (G1,G2). CTNNA2 is enriched in G2 and G3, while CTNNA3 is enriched 

in pathways from our G2 component. CTNNA2 has been identified in a large study of risk-

taking propensity and excitement-seeking (Terracciano, Esko et al. 2011). Thus, there may 

be commonalities and functional gene networks underlying multiple types of substance 

abuse.

Enriched pathways in the G2 component include ‘ MAPK signaling’ ‘PI3K/Akt signaling’, 

‘salivary secretion’, ‘hypertrophic cardiomyopathy’, ‘dilated cardiomyopathy’, 

‘arrhythmogenic right ventricular cardiomyopathy’, and ‘circadian entrainment’.(Table I). 

Protein expression related to cardiovascular function would logically affect both subjective 

drug effects and physiological responses, as they involve generating, amplifying and 

transmitting cellular electrical signals in both heart and CNS. Heart rate increase in response 

to drug stimulant properties has been reported as a risk factor for substance abuse (Conrod, 

Peterson et al. 2001). Li and colleagues (Li, Mao et al. 2008) surveyed 1500 human 

addiction-related genes to identify molecular pathways significantly enriched for all four 

major classes of addictive drugs (Li, Mao et al. 2008). The authors then narrowed these 

genes to those supported by two or more studies, and finally to gene pathways enriched by 

these genes as compared to the whole genome. Among the most significant pathways 

identified were the MAPK (G2, G3) and calcium signaling (G1, G2, and G3) pathways 

along with the gap junction (G1). MAPK is also cited in relation to amphetamine exposure 

by Wang 2011 (Wang, Yuan et al. 2011) and Akt by Chen 2009 (Chen, Chen et al. 2009).

Salivary secretion decreases with amphetamine (Gotrick, Giglio et al. 2009), leading to 

complaints of dry mouth, and in part contributing to dental damage in chronic amphetamine 

abuse. DHRS3 is a top gene in the G2 component, and is related to myocardial formation. 

The deletion or mutation of other top G2 genes result in cardiac failure, arrhythmia 

(SLC8A1) and stroke (PRKCH, COL4A2).

Another top-ranked gene appearing in G2 codes for the GABA-receptor subunit, GABRG3, 

identified as conferring genetic risk for alcoholism/alcohol withdrawal symptoms in COGA 

(Edenberg and Foroud 2006). This gene also appeared within our functional networks 

named ‘morphine addiction’ and ‘nicotine addiction’.
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The G3 component includes enriched pathways previously discussed in G1 and G2 in 

addition to pathways named ‘focal adhesion’, ‘vascular smooth muscle contraction’, and 

‘cardiac muscle contraction’. Adhesion molecules likely play an important role in 

methamphetamine risk (Uhl, Drgon et al. 2008).

This component contained multiple genes associated with neuronal development and with 

vascular smooth muscle contraction. Two among the top four, ACTB (Shibasaki, Mizuno et 

al. 2011) and NCOR2, are known to be associated with amphetamine and cocaine 

dependence, respectively; the second emerged as a gene important in cocaine dependence 

risk study (Gelernter, Sherva et al. 2013). Several cardiac genes in the G3 component are 

involved in smooth muscle function through calcium and potassium channel-related 

pathways (KCNK10, KCNMA1, PIK3C2B, PRKCE, ST6GALNAC3). PRKCE has also been 

implicated as a risk gene for substance use, and hyperactive stress response. Animals with 

PRKCE dysfunction show increased sensitive to alcohol and consume less alcohol than 

wild-type mice (Choi, Wang et al. 2002)

Genes in the CACNA family (CACNG3, CACNA2D4, CACNA1A, CACNA1E, CACNA1G, 

CACNA2D3, CACNA2D1, CACNB2) were represented in the ‘cardiac muscle contraction’ 

pathway and highly correlated with behavioral components in our G3 component. 

CACNA1C and CACNA2D4 deletion have been implicated in bipolar disorder and 

schizophrenia susceptibility (Roussos, Bitsios et al. 2013). Similarly, a nicotinic cholinergic 

receptor gene enriched in pathways of G1 (CHRNA7) has been associated with 

schizophrenia (Freedman 2013). Amphetamine use is associated with symptomatic 

schizophrenia-like illnesses, likely associated with excessive dopamine release (Bramness, 

Gundersen et al. 2012).

In general, Para-ICA identified gene components related to drug use and abuse such as 

dopaminergic and glutamatergic signaling. Our results indicate a possible multi-loci genetic 

component encompassing individual genes playing crucial roles in drug response that may 

be markers for substance abuse susceptibility. Although we were unable to replicate the 

majority of previously reported genetic findings from the same subjects in univariate 

analyses (Hamidovic, Dlugos et al. 2010, Wardle, Hart et al. 2013); these initially-published 

findings were also not replicated in an expanded subject sample (Hart, de Wit et al. 2013).

Limitations

We recognize that our results are unreplicated, and that our analysis does not cover all genes 

or all neural genes. Our study is limited to functional annotation software categories and 

gene ontologies that are works-in-progress (Khatri, Sirota et al. 2012), and can contain 

functional annotation data based on prediction rather than experimental evidence. In 

addition, each of the pathway databases could have a inherent bias associated with them 

with respect to genes available within them given the nature of their initial field of inception. 

While our genetic pathways reflect the most current knowledge to date, the particular 

nomenclature may be transient. Our analysis also depends on SNPs with allele frequencies 

greater than 0.1 and restricting to KEGG related genes. The SNPs genotyped on the arrays 

may not capture some functional variants that are not in strong linkage disequilibrium.
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Para-ICA should be considered for future analyses of behavioral-genetic relationships in 

individual drug responses. This multivariate analysis strategy compares relationships within 

and between two composite clusters, and identified several plausible network associations 

between d-amphetamine response and genetic variation. Both phenotypic and genotypic 

findings were generally predictable from known clinical acute behavioral and cardiovascular 

amphetamine effects and corresponding genes associated with related physiological brain 

and cardiovascular processes respectively, as well as genes associated with longer-term 

psychostimulant abuse/dependence.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Parallel Independent Component Analysis Study flow
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