Skip to main content
Log in

Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

SSR103800 and SSR504734 are novel glycine transport 1 (GlyT1) inhibitors with therapeutic potential for the treatment of schizophrenia.

Objective

The present studies investigated the effects of GlyT1 inhibitors in acute pharmacological and neurodevelopmental models of schizophrenia using latent inhibition in the rat; these latent inhibition (LI) models are believed to be predictive for treatments of positive, negative, and cognitive aspects of schizophrenia.

Materials and methods

LI, the poorer conditioning to a previously irrelevant stimulus, was measured in a conditioned emotional response procedure in male rats. The effects of SSR103800 or SSR504734 (both at 1, 3, and 10 mg/kg, i.p.) were determined on amphetamine-induced disrupted LI, MK-801-induced abnormally persistent LI, and neurodevelopmentally induced abnormally persistent LI in adult animals that had been neonatally treated with a nitric oxide synthase inhibitor.

Results

SSR103800 (1 and 3 mg/kg) and SSR504734 (1 and 10 mg/kg) potentiated LI under conditions where LI was not present in nontreated controls and SSR103800 (1 mg/kg) reversed amphetamine-induced disrupted LI while not affecting LI on its own. Additionally, SSR103800 (1 and 3 mg/kg) and SSR504734 (3 and 10 mg/kg) reversed abnormally persistent LI induced by MK-801. In the neurodevelopmental model, SSR504734 (3 and 10 mg/kg) reverted the LI back to control (normal) levels.

Conclusions

These preclinical data, from acute and neurodevelopmental models, suggest that GlyT1 inhibition may exhibit activity in the positive, negative, and cognitive symptom domains of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguado L, San Antonio A, Perez L, del Valle R, Gomez J (1994) Effects of the NMDA receptor antagonist ketamine on flavor memory: conditioned aversion, latent inhibition, and habituation of neophobia. Behav Neural Biol 61:271–281

    PubMed  CAS  Google Scholar 

  • Akbarian S, Viñuela A, Kim JJ, Potkin SG, Bunney WE Jr, Jones EG (1993) Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 50(3):178–187

    PubMed  CAS  Google Scholar 

  • Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE Jr, Jones EG (1996) Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 53(5):425–36

    PubMed  CAS  Google Scholar 

  • Allen RM, Young SJ (1978) Phencyclidine-induced psychosis. Am J Psychiatry 135(9):1081–1084

    PubMed  CAS  Google Scholar 

  • Atkinson BN, Bell SC, De Vivo M, Kowalski LR, Lechner SM, Ognyanov VI, Tham CS, Tsai C, Jia J, Ashton D, Klitenick MA (2001) ALX 5407: a potent, selective inhibitor of the hGlyT1 glycine transporter. Mol Pharmacol 60(6):1414–1420

    PubMed  CAS  Google Scholar 

  • Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci 95(26):15730–15734

    PubMed  CAS  Google Scholar 

  • Black MD, Selk DE, Hitchcock JM, Wettstein JG, Sorensen SM (1999) On the effect of neonatal nitric oxide synthase inhibition in rats: a potential neurodevelopmental model of schizophrenia. Neuropharmacology 38(9):1299–306

    PubMed  CAS  Google Scholar 

  • Black MD, Simmonds J, Senyah Y, Wettstein JG (2002) Neonatal nitric oxide synthase inhibition: social interaction deficits in adulthood and reversal by antipsychotic drugs. Neuropharmacology 42(3):414–420

    PubMed  CAS  Google Scholar 

  • Bloom FE (1993) Advancing neurodevelopmental origin for schizophrenia. Arch Gen Psychiatry 50:224–227

    PubMed  CAS  Google Scholar 

  • Bogarts B (1993) Recent advances in the neuropathology of schizophrenia. Schizophr Bull 19:431–445

    Google Scholar 

  • Boulay D, Pichat P, Dargazanli G, Estenne-Bouhtou G, Terranova JP, Rogacki N, Stemmelin J, Coste A, Lanneau C, Desvignes C, Cohen C, Alonso R, Vigé X, Biton B, Steinberg R, Sevrin M, Oury-Donat F, George P, Bergis O, Griebel G, Avenet P, Scatton B (2008) Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia. Pharmacol Biochem Behav (in press).

  • Bouton ME (1993) Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol Bull 114(1):80–99

    PubMed  CAS  Google Scholar 

  • Brenman JE, Bredt DS (1997) Synaptic signaling by nitric oxide. Curr Opin Neurobiol 7(3):374–378

    PubMed  CAS  Google Scholar 

  • Brown A, Carlyle I, Clark J, Hamilton W, Gibson S, McGarry G, McEachen S, Rae D, Thorn S, Walker G (2001) Discovery and SAR of org 24598—a selective glycine uptake inhibitor. Bioorg Med Chem Lett 11:2007–2009

    PubMed  CAS  Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia—implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13:272–276

    PubMed  CAS  Google Scholar 

  • Carlsson A, Waters N, Waters S, Carlsson ML (2000) Network interactions in schizophrenia—therapeutic implications. Brain Res Brain Res Rev 31(2–3):342–349

    PubMed  CAS  Google Scholar 

  • Carlsson ML, Carlsson A, Nilsson M (2004) Schizophrenia: from dopamine to glutamate and back. Curr Med Chem 11(3):267–277

    PubMed  CAS  Google Scholar 

  • Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26(4–6):365–384

    PubMed  CAS  Google Scholar 

  • Crider A (1997) Perseveration in schizophrenia. Schizophr Bull 23:63–74

    PubMed  CAS  Google Scholar 

  • Cubelos B, Giménez C, Zafra F (2005) Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex 15(4):448–459

    PubMed  Google Scholar 

  • Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Nat Acad Sci 88(17):7797–7801

    PubMed  CAS  Google Scholar 

  • Depoortere R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, Poncelet M, Heaulme M, Santucci V, Decobert M, Cudennec A, Voltz C, Boulay D, Terranova JP, Stemmelin J, Roger P, Marabout B, Sevrin M, Vige X, Biton B, Steinberg R, Francon D, Alonso R, Avenet P, Oury-Donat F, Perrault G, Griebel G, George P, Soubrie P, Scatton B (2005) Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 30:1963–1985

    PubMed  CAS  Google Scholar 

  • Enomoto T, Noda Y, Nabeshima T (2007) Phencyclidine and genetic animal models of schizophrenia developed in relation to the glutamate hypothesis. Methods Find Exp Clin Pharmacol 29(4):291–301

    PubMed  CAS  Google Scholar 

  • Evins AE, Amico E, Posever TA, Toker R, Goff DC (2002) D-Cycloserine added to risperidone in patients with primary negative symptoms of schizophrenia. Schizophr Res 56(1–2):19–23

    PubMed  Google Scholar 

  • Fejgin K, Pålsson E, Wass C, Svensson L, Klamer D (2008) Nitric oxide signaling in the medial prefrontal cortex is involved in the biochemical and behavioral effects of phencyclidine. Neuropsychopharmacology 33:1874–1883

    PubMed  CAS  Google Scholar 

  • Gaisler-Salomon I, Weiner I (2003) Systemic administration of MK-801 produces an abnormally persistent latent inhibition which is reversed by clozapine but not haloperidol. Psychopharmacology 166(4):333–342

    PubMed  CAS  Google Scholar 

  • Gaisler-Salomon I, Diamant L, Rubin C, Weiner I (2008) Abnormally persistent latent inhibition induced by MK801 is reversed by risperidone and by positive modulators of NMDA receptor function: differential efficacy depending on the stage of the task at which they are administered. Psychopharmacology 196(2):255–267

    PubMed  CAS  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336(6197):385–388

    PubMed  CAS  Google Scholar 

  • Gluck MR, Thomas RG, Davis KL, Haroutunian V (2002) Implications for altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients. Am J Psychiatry 159(7):1165–1173

    PubMed  Google Scholar 

  • Goff DC, Tsai G, Manoach DS, Coyle JT (1995) Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry 152(8):1213–1215

    PubMed  CAS  Google Scholar 

  • Goff DC, Tsai G, Manoach DS, Flood J, Darby DG, Coyle JT (1996) D-cycloserine added to clozapine for patients with schizophrenia. Am J Psychiatry 153(12):1628–1630

    PubMed  CAS  Google Scholar 

  • Goff DC, Tsai G, Levitt J, Amico E, Manoach D, Schoenfeld DA, Hayden DL, McCarley R, Coyle JT (1999) A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 56(1):21–27

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Selemon LD (1997) Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 23(3):437–458

    PubMed  CAS  Google Scholar 

  • Gomeza J, Ohno K, Betz H (2003) Glycine transporter isoforms in the mammalian central nervous system: structures, functions and therapeutic promises. Curr Opin Drug Discov Dev 6(5):675–682

    CAS  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41(1):1–24

    PubMed  CAS  Google Scholar 

  • Gray JA, Feldon J, Rawlins JNP, Hemsley DR, Smith AD (1991) The neuropsychology of schizophrenia. Behav Brain Sci 14:1–84

    Google Scholar 

  • Gray NS, Pickering AD, Hemsley DR, Dawling S, Gray JA (1992) Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in man. Psychopharmacology 107(2–3):425–430

    PubMed  CAS  Google Scholar 

  • Gray JA, Joseph MH, Hemsley DR, Young AM, Warburton EC, Boulenguez P, Grigoryan GA, Peters SL, Rawlins JN, Taib CT, et al (1995) The role of mesolimbic dopaminergic and retrohippocampal afferents to the nucleus accumbens in latent inhibition: implications for schizophrenia. Behav Brain Res 71(1–2):19-31

    PubMed  CAS  Google Scholar 

  • Harich S, Gross G, Bespalov A (2007) Stimulation of the metabotropic glutamate 2/3 receptor attenuates social novelty discrimination deficits induced by neonatal phencyclidine treatment. Psychopharmacology 192(4):511–519

    PubMed  CAS  Google Scholar 

  • Harsing LG Jr., Gacsalyi I, Szabo G, Schmidt E, Sziray N, Sebban C, Tesolin-Decros B, Matyus P, Egyed A, Spedding M, Levay G (2003) The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol Biochem Behav 74:811–825

    PubMed  CAS  Google Scholar 

  • Heresco-Levy U (2003) Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27(7):1113–1123

    PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC (2004) Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res 66(2–3):89–96

    PubMed  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P, Bar G, Catinari S, Ermilov M (2005) D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry 57(6):577–585

    PubMed  CAS  Google Scholar 

  • Hope BT, Michael GJ, Knigge KM, Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88(7):2811–2814

    PubMed  Google Scholar 

  • Hopper RA, Garthwaite J (2006) Tonic and phasic nitric oxide signals in hippocampal long-term potentiation. J Neurosci 26(45):11513–11521

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev 31:6–41

    PubMed  CAS  Google Scholar 

  • Jackson ME, Moghaddam B (2001) Amygdala regulation of nucleus accumbens dopamine output is governed by the prefrontal cortex. J Neurosci 21:676–681

    PubMed  CAS  Google Scholar 

  • Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9(11):984–997, 979

    PubMed  CAS  Google Scholar 

  • Javitt DC (2008) Glycine transport inhibitors and the treatment of schizophrenia. Biol Psychiatry 63(1):6–8

    PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308

    PubMed  CAS  Google Scholar 

  • Javitt DC, Silipo G, Cienfuegos A, Shelley AM, Bark N, Park M, Lindenmayer JP, Suckow R, Zukin SR (2001) Adjunctive high-dose glycine in the treatment of schizophrenia. Int J Neuropsychopharmacol 4(4):385–391

    PubMed  CAS  Google Scholar 

  • Javitt DC, Hashim A, Sershen H (2005) Modulation of striatal dopamine release by glycine transport inhibitors. Neuropsychopharmacology 30(4):649–656

    PubMed  CAS  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20(3):201–25

    PubMed  CAS  Google Scholar 

  • Jentsch JD, Taylor JR (2001) Impaired inhibition of conditioned responses produced by subchronic administration of phencyclidine to rats. Neuropsychopharmacology 24:66–74

    PubMed  CAS  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531

    PubMed  CAS  Google Scholar 

  • Kapur S, Agid O, Mizrahi R, Li M (2006) How antipsychotics work—from receptors to reality. NeuroRx 3:10–21

    PubMed  Google Scholar 

  • Kato K, Shishido T, Ono M, Shishido K, Kobayashi M, Niwa S (2001) Glycine reduces novelty- and methamphetamine-induced locomotor activity in neonatal ventral hippocampal damaged rats. Neuropsychopharmacology 24:330–332

    PubMed  CAS  Google Scholar 

  • Kinney GG, Sur C, Burno M, Mallorga PJ, Williams JB, Figueroa DJ, Wittmann M, Lemaire W, Conn PJ (2003) The glycine transporter type 1 inhibitor N-[3-(4¢-fluorophenyl)-3-(4¢-phenylphenoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J Neurosci 23:7586–7591

    PubMed  CAS  Google Scholar 

  • Kiss JP, Vizi ES (2001) Nitric oxide: a novel link between synaptic and nonsynaptic transmission. Trends Neurosci 24(4):211–215

    PubMed  CAS  Google Scholar 

  • Klamer D, Palsson E, Revesz A, Engel JA, Svensson L (2004) Habituation of acoustic startle is disrupted by psychotomimetic drugs: differential dependence on dopaminergic and nitric oxide modulatory mechanisms. Psychopharmacology (Berl) 176:440–450

    CAS  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715

    PubMed  CAS  Google Scholar 

  • Kraepelin E (1919) Dementia Praecox and Paraphrenia. Livingstone, Edinburgh

  • Lahti AC, Koffel B, LaPorte D, Tamminga CA (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13(1):9–19

    PubMed  CAS  Google Scholar 

  • Le Pen G, Kew J, Alberati D, Borroni E, Heitz MP, Moreau JL (2003) Prepulse inhibition deficits of the startle reflex in neonatal ventral hippocampal-lesioned rats: reversal by glycine and a glycine transporter inhibitor. Biol Psychiatry 54:1162–1170

    PubMed  Google Scholar 

  • Lipina T, Labrie V, Weiner I, Roder J (2005) Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology 179(1):54–67

    PubMed  CAS  Google Scholar 

  • Lipton SA (2007) Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets 8(5):621–632

    PubMed  CAS  Google Scholar 

  • Lipton SA, Choi YB, Takahashi H, Zhang D, Li W, Godzik A, Bankston LA (2002) Cysteine regulation of protein function—as exemplified by NMDA-receptor modulation. Trends Neurosci 25(9):474–480

    PubMed  CAS  Google Scholar 

  • Lubow RE (1989) Latent inhibition and conditioned attention theory. Cambridge University Press, New York

    Google Scholar 

  • Lubow RE (2005) Construct validity of the animal latent inhibition model of selective attention deficits in schizophrenia. Schizophr Bull 31:139–153

    PubMed  CAS  Google Scholar 

  • Lubow RE, Weiner I, Schnur P (1981) Conditioned attention theory. In: Bower GH (ed) The psychology of learning and motivation, vol 15. Academic, New York, pp 1–49

    Google Scholar 

  • Mackintosh NJ (1975) A theory of attention: variations in the associability of stimuli with reinforcement. Psychol Rev 82:276–298

    Google Scholar 

  • Martina M, Gorfinkel Y, Halman S, Lowe JA, Periyalwar P, Schmidt CJ, Bergeron R (2004) Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol 557:489–500

    PubMed  CAS  Google Scholar 

  • Moghaddam B, Jackson ME (2003) Glutamatergic animal models of schizophrenia. Ann NY Acad Sci 1003:131–137

    PubMed  CAS  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    PubMed  CAS  Google Scholar 

  • Morice R (1990) Cognitive inflexibility and pre-frontal dysfunction in schizophrenia and mania. Br J Psychiatry 157:50–54

    PubMed  CAS  Google Scholar 

  • Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Rev 332–3:275–307

    Google Scholar 

  • Mouri A, Noda Y, Enomoto T, Nabeshima T (2007) Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem Int 51(2–4):173–184

    PubMed  CAS  Google Scholar 

  • Palsson E, Klamer D, Wass C, Archer T, Engel JA, Svensson L (2005) The effects of phencyclidine on latent inhibition in taste aversion conditioning: differential effects of preexposure and conditioning. Behav Brain Res 157:139–146

    PubMed  CAS  Google Scholar 

  • Rascle C, Mazas O, Vaiva G, Tournant M, Raybois O, Goudemand M, Thomas P (2001) Clinical features of latent inhibition in schizophrenia. Schizophr Res 51(2–3):149–61

    PubMed  CAS  Google Scholar 

  • Robinson GB, Port RL, Stillwell EG (1993) Latent inhibition of the classically conditioned rabbit nictitating membrane response is unaffected by the NMDA antagonist MK-801. Psychobiology 21:120–124

    CAS  Google Scholar 

  • Roskams AJ, Bredt DS, Dawson TM, Ronnet GV (1994) Nitric oxide mediates the formation of synaptic connections in developing and regenerating olfactory receptor neurons. Neuron 13:289–299

    PubMed  CAS  Google Scholar 

  • Sánchez-Islas E, León-Olea M (2004) Nitric oxide synthase inhibition during synaptic maturation decreases synapsin I immunoreactivity in rat brain. Nitric Oxide 10(3):141–149

    PubMed  Google Scholar 

  • Stone JM, Morrison PD, Pilowsky LS (2007) Glutamate and dopamine dysregulation in schizophrenia—a synthesis and selective review. J Psychopharmacol 21(4):440–452

    PubMed  CAS  Google Scholar 

  • Svensson TH (2000) Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Brain Res Rev 31:320–329

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Koob GF (1987) Dopamine, schizophrenia, mania, and depression: toward a unified hypothesis of cortico–striato–pallido–thalamic function. Behav Brain Sci 10:197–245

    Article  Google Scholar 

  • Tamminga CA, Holcomb HH, Gao XM, Lahti AC (1995) Glutamate pharmacology and the treatment of schizophrenia: current status and future directions. Int Clin Psychopharmacology 10(Suppl 3):29–37

    Google Scholar 

  • Thornton JC, Dawe S, Lee C, Capstick C, Corr PJ, Cotter P, Frangou S, Gray NS, Russell MA, Gray JA (1996) Effects of nicotine and amphetamine on latent inhibition in human subjects. Psychopharmacology 127(2):164–173

    PubMed  CAS  Google Scholar 

  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT (1998) D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44(11):1081–1089

    PubMed  CAS  Google Scholar 

  • Turgeon SM, Auerbach EA, Heller MA (1998) The delayed effects of phencyclidine (PCP) disrupt latent inhibition in a conditioned taste aversion paradigm. Pharmacol Biochem Behav 60:553–558

    PubMed  CAS  Google Scholar 

  • Turgeon SM, Auerbach EA, Duncan-Smith MK, George JR, Graves WW (2000) The delayed effects of DTG and MK-801 on latent inhibition in a conditioned taste-aversion paradigm. Pharmacol Biochem Behav 66(3):533–539

    PubMed  CAS  Google Scholar 

  • van der Meulen JA, Bilbija L, Joosten RN, de Bruin JP, Feenstra MG (2003) The NMDA-receptor antagonist MK-801 selectively disrupts reversal learning in rats. Neuroreport 14:2225–2228

    PubMed  Google Scholar 

  • Wass C, Archer T, Pålsson E, Fejgin K, Alexandersson A, Klamer D, Engel JA, Svensson L (2006) Phencyclidine affects memory in a nitric oxide-dependent manner: working and reference memory. Behav Brain Res 174(1):49–55

    PubMed  CAS  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44(7):660–669

    PubMed  CAS  Google Scholar 

  • Weinberger DR, Lipska BK (1995) Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res 16:87–110

    PubMed  CAS  Google Scholar 

  • Weiner I (1990) Neural substrates of latent inhibition: the switching model. Psychol Bull 108(3):442–461

    PubMed  CAS  Google Scholar 

  • Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 169(3–4):257–297

    PubMed  CAS  Google Scholar 

  • Weiner I, Feldon J (1986) Reversal and nonreversal shifts under amphetamine. Psychopharmacology 89(3):355–359

    PubMed  CAS  Google Scholar 

  • Weiner I, Feldon J (1992) Phencyclidine does not disrupt latent inhibition in rats: implications for animal models of schizophrenia. Pharmacol Biochem Behav 42(4):625–631

    PubMed  CAS  Google Scholar 

  • Weiner I, Feldon J (1997) The switching model of latent inhibition: an update of neural substrates. Behav Brain Res 88(1):11–25

    PubMed  CAS  Google Scholar 

  • Weiner I, Joel D (2002) Dopamine in schizophrenia: Dysfunctional information processing in basal ganglia-thalamocortical split circuits. In: Di Chiara G (ed) Handbook of experimental pharmacology: dopamine in the CNS. Springer, Berlin, pp 417–472

    Google Scholar 

  • Weiner I, Lubow RE, Feldon J (1984) Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology 83(2):194–199

    PubMed  CAS  Google Scholar 

  • Weiner I, Gal G, Rawlins JN, Feldon J (1996) Differential involvement of the shell and core subterritories of the nucleus accumbens in latent inhibition and amphetamine-induced activity. Behav Brain Res 81(1–2):123–133

    PubMed  CAS  Google Scholar 

  • Wu W, Li L, Yick LW, Chai H, Yang Y, Prevette DM, Oppenheim RW (2003) GDNF and BDNF alter the expression of neuronal NOS, c-Jun, and p75 and prevent motoneurons death following spinal root avulsion in adult rats. J Neurotrauma 20:603–612

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Black.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Black, M.D., Varty, G.B., Arad, M. et al. Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacology 202, 385–396 (2009). https://doi.org/10.1007/s00213-008-1289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1289-2

Keywords

Navigation