Skip to main content
Log in

Effects of chronic nitric oxide synthase inhibition on V’O2max and exercise capacity in mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Acute inhibition of NOS by L-NAME (Nω-nitro-L-arginine methyl ester) is known to decrease maximal oxygen consumption (V’O2max) and impair maximal exercise capacity, whereas the effects of chronic L-NAME treatment on V’O2max and exercise performance have not been studied so far. In this study, we analysed the effect of L-NAME treatment, (LN2 and LN12, respectively) on V’O2max and exercise capacity (in maximal incremental running and prolonged sub-maximal incremental running tests), systemic NO bioavailability (plasma nitrite (NO2 ) and nitrate (NO3 )) and prostacyclin (PGI2) production in C57BL6/J mice. Mice treated with L-NAME for 2 weeks (LN2) displayed higher V’O2max and better running capacity than age-matched control mice. In LN2 mice, NO bioavailability was preserved, as evidenced by maintained NO2 plasma concentration. PGI2 production was activated (increased 6-keto-PGF plasma concentration) and the number of circulating erythrocytes (RBC) and haemoglobin concentration were increased. In mice treated with L-NAME for 12 weeks (LN12), NO bioavailability was decreased (lower NO2 plasma concentration), and 6-keto-PGF plasma concentration and RBC number were not elevated compared to age-matched control mice. However, LN12 mice still performed better during the maximal incremental running test despite having lower V’O2max. Interestingly, the LN12 mice showed poorer running capacity during the prolonged sub-maximal incremental running test. To conclude, short-term (2 weeks) but not long-term (12 weeks) treatment with L-NAME activated robust compensatory mechanisms involving preservation of NO2- plasma concentration, overproduction of PGI2 and increased number of RBCs, which might explain the fully preserved exercise capacity despite the inhibition of NOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailey SJ et al (2009) Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. Journal of applied physiology (Bethesda, Md: 1985) 107:1144–1155. doi:10.1152/japplphysiol.00722.2009

    Article  CAS  Google Scholar 

  • Bailey SJ et al (2010) Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. Journal of applied physiology (Bethesda, Md : 1985) 109:135–148. doi:10.1152/japplphysiol.00046.2010

    Article  CAS  Google Scholar 

  • Bailey SJ, Vanhatalo A, Winyard PG, Jones AM (2012) The nitrate-nitrite-nitric oxide pathway: its role in human exercise physiology. European Journal of Sport Science 12:309–320. doi:10.1080/17461391.2011.635705

    Article  Google Scholar 

  • Beverelli F, Bea ML, Puybasset L, Giudicelli JF, Berdeaux A (1997) Chronic inhibition of NO synthase enhances the production of prostacyclin in coronary arteries through upregulation of the cyclooxygenase type 1 isoform. Fundamental & clinical pharmacology 11:252–259

    Article  CAS  Google Scholar 

  • Bley KR et al (2006) RO1138452 and RO3244794: characterization of structurally distinct, potent and selective IP (prostacyclin) receptor antagonists. Br J Pharmacol 147:335–345. doi:10.1038/sj.bjp.0706554

    Article  CAS  PubMed  Google Scholar 

  • Blumberg FC, Riegger GA, Pfeifer M (2002) Hemodynamic effects of aerosolized iloprost in pulmonary hypertension at rest and during exercise. Chest 121:1566–1571

    Article  CAS  PubMed  Google Scholar 

  • Bryant CE, Allcock GH, Warner TD (1995) Comparison of effects of chronic and acute administration of NG-nitro-L-arginine methyl ester to the rat on inhibition of nitric oxide-mediated responses. Br J Pharmacol 114:1673–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugiardini R, Galvani M, Ferrini D, Gridelli C, Mari L, Puddu P, Lenzi S (1986) Effects of iloprost, a stable prostacyclin analog, on exercise capacity and platelet aggregation in stable angina pectoris. Am J Cardiol 58:453–459

    Article  CAS  PubMed  Google Scholar 

  • Cardoso AM et al (2013) Physical training prevents oxidative stress in L-NAME-induced hypertension rats. Cell Biochem Funct 31:136–151. doi:10.1002/cbf.2868

    Article  CAS  PubMed  Google Scholar 

  • Cermak NM, Gibala MJ, van Loon LJ (2012) Nitrate supplementation's improvement of 10-km time-trial performance in trained cyclists. International journal of sport nutrition and exercise metabolism 22:64–71

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Boettger MK, Reif A, Schmitt A, Uceyler N, Sommer C (2010) Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice. Mol Pain 6:13. doi:10.1186/1744-8069-6-13

    PubMed  PubMed Central  Google Scholar 

  • Chlopicki S, Kozlovski V, Lorkowska B, Drelicharz L, Gebska A (2005) Compensation of endothelium-dependent responses in coronary circulation of eNOS-deficient mice, J Cardiovasc Pharmacol 46:115–23

  • Csanyi G et al (2012) Functional alterations in endothelial NO, PGI(2) and EDHF pathways in aorta in ApoE/LDLR-/- mice. Prostaglandins & other lipid mediators 98:107–115. doi:10.1016/j.prostaglandins.2012.02.002

    Article  CAS  Google Scholar 

  • Damasceno F, Skinner GO, Araujo PC, Ferraz MM, Tenorio F, de Almeida OM (2013) Nitric oxide modulates the hyperalgesic response to mechanical noxious stimuli in sleep-deprived rats. BMC Neurosci 14:92. doi:10.1186/1471-2202-14-92

    Article  PubMed  PubMed Central  Google Scholar 

  • Deonikar P, Abu-Soud HM, Kavdia M (2014) Computational analysis of nitric oxide biotransport to red blood cell in the presence of free hemoglobin and NO donor. Microvasc Res 95:15–25. doi:10.1016/j.mvr.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  • Farias M 3rd, Gorman MW, Savage MV, Feigl EO (2005) Plasma ATP during exercise: possible role in regulation of coronary blood flow. Am J Phys Heart Circ Phys 288:H1586–H1590. doi:10.1152/ajpheart.00983.2004

    CAS  Google Scholar 

  • Gladwin MT (2006) Role of the red blood cell in nitric oxide homeostasis and hypoxic vasodilation. Adv Exp Med Biol 588:189–205

    Article  PubMed  Google Scholar 

  • Godecke A, Decking UK, Ding Z, Hirchenhain J, Bidmon HJ, Godecke S, Schrader J (1998) Coronary hemodynamics in endothelial NO synthase knockout mice. Circ Res 82:186–194

    Article  CAS  PubMed  Google Scholar 

  • Goligorsky MS, Chen J, Brodsky S (2001) Workshop: endothelial cell dysfunction leading to diabetic nephropathy: focus on nitric oxide. Hypertension 37:744–748

    Article  CAS  PubMed  Google Scholar 

  • Grassi B, Rossiter HB, Zoladz JA (2015) Skeletal muscle fatigue and decreased efficiency: two sides of the same coin? Exerc Sport Sci Rev 43:75–83. doi:10.1249/jes.0000000000000043

    Article  PubMed  Google Scholar 

  • Hellsten Y, Nyberg M, Jensen LG, Mortensen SP (2012) Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol 590:6297–6305. doi:10.1113/jphysiol.2012.240762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann M, Flammer A, Luscher TF (2006) Nitric oxide in hypertension. Journal of clinical hypertension (Greenwich, Conn) 8:17–29

    Article  CAS  Google Scholar 

  • Hirai T, Visneski MD, Kearns KJ, Zelis R, Musch TI (1994) Effects of NO synthase inhibition on the muscular blood flow response to treadmill exercise in rats. Journal of applied physiology (Bethesda, Md : 1985) 77:1288–1293

    CAS  Google Scholar 

  • Jones AM (2014) Dietary nitrate supplementation and exercise performance. Sports medicine (Auckland, NZ) 44(Suppl 1):S35–S45. doi:10.1007/s40279-014-0149-y

    Article  Google Scholar 

  • Jones AM, Wilkerson DP, Campbell IT (2004) Nitric oxide synthase inhibition with L-NAME reduces maximal oxygen uptake but not gas exchange threshold during incremental cycle exercise in man. J Physiol 560:329–338. doi:10.1113/jphysiol.2004.065664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokkinos P et al (2009) Exercise capacity and mortality in hypertensive men with and without additional risk factors. Hypertension 53:494–499. doi:10.1161/hypertensionaha.108.127027

    Article  CAS  PubMed  Google Scholar 

  • Lacerda AC, Marubayashi U, Balthazar CH, Coimbra CC (2006) Evidence that brain nitric oxide inhibition increases metabolic cost of exercise, reducing running performance in rats. Neurosci Lett 393:260–263. doi:10.1016/j.neulet.2005.09.076

    Article  CAS  PubMed  Google Scholar 

  • Lansley KE et al (2011) Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. Journal of applied physiology (Bethesda, Md : 1985) 110:591–600. doi:10.1152/japplphysiol.01070.2010

    Article  CAS  Google Scholar 

  • Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B (2007) Effects of dietary nitrate on oxygen cost during exercise. Acta physiologica (Oxford, England) 191:59–66. doi:10.1111/j.1748-1716.2007.01713.x

    Article  CAS  Google Scholar 

  • Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B (2010) Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med 48:342–347. doi:10.1016/j.freeradbiomed.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  • Laughlin MH, Newcomer SC, Bender SB (2008) Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. Journal of applied physiology (Bethesda, Md : 1985) 104:588–600. doi:10.1152/japplphysiol.01096.2007

    Article  Google Scholar 

  • Lim PO, MacFadyen RJ, Clarkson PB, MacDonald TM (1996) Impaired exercise tolerance in hypertensive patients. Ann Intern Med 124:41–55

    Article  CAS  PubMed  Google Scholar 

  • Loscalzo J (2001) Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 88:756–762

    Article  CAS  PubMed  Google Scholar 

  • Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167. doi:10.1038/nrd2466

    Article  CAS  PubMed  Google Scholar 

  • Mairbaurl H (2013) Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front Physiol 4:332. doi:10.3389/fphys.2013.00332

    Article  PubMed  PubMed Central  Google Scholar 

  • Mark DB, Lauer MS (2003) Exercise capacity: the prognostic variable that doesn't get enough respect. Circulation 108:1534–1536. doi:10.1161/01.cir.0000094408.38603.7e

    Article  PubMed  Google Scholar 

  • Markwald RR, Kirby BS, Crecelius AR, Carlson RE, Voyles WF, Dinenno FA (2011) Combined inhibition of nitric oxide and vasodilating prostaglandins abolishes forearm vasodilatation to systemic hypoxia in healthy humans. J Physiol 589:1979–1990. doi:10.1113/jphysiol.2011.205013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missault L, Duprez D, de Buyzere M, de Backer G, Clement D (1992) Decreased exercise capacity in mild essential hypertension: non-invasive indicators of limiting factors. J Hum Hypertens 6:151–155

    CAS  PubMed  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  • Muhannad AAA-B (2007) The exploration of participate l.Arginine – nitric oxide system in pain perception of both gender mice. Basrah Journal of Veterinary Research 6:133–137

    Google Scholar 

  • Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro LJ (2006) Nitric oxide and atherosclerosis: an update. Nitric Oxide 15:265–279. doi:10.1016/j.niox.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  • Niebauer J, Cooke JP (1996) Cardiovascular effects of exercise: role of endothelial shear stress. J Am Coll Cardiol 28:1652–1660. doi:10.1016/s0735-1097(96)00393-2

    Article  CAS  PubMed  Google Scholar 

  • Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406. doi:10.1152/physrev.90100.2007

    Article  CAS  PubMed  Google Scholar 

  • Pedersen BK, Fischer CP (2007) Beneficial health effects of exercise—the role of IL-6 as a myokine. Trends Pharmacol Sci 28:152–156. doi:10.1016/j.tips.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  • Przyborowski K et al (2015) Effects of 1-methylnicotinamide (MNA) on exercise capacity and endothelial response in diabetic mice. PLoS One 10:e0130908. doi:10.1371/journal.pone.0130908

    Article  PubMed  PubMed Central  Google Scholar 

  • Puybasset L, Bea ML, Ghaleh B, Giudicelli JF, Berdeaux A (1996) Coronary and systemic hemodynamic effects of sustained inhibition of nitric oxide synthesis in conscious dogs. Evidence for cross talk between nitric oxide and cyclooxygenase in coronary vessels Circulation research 79:343–357

    CAS  PubMed  Google Scholar 

  • Regensteiner JG (2004) Type 2 diabetes mellitus and cardiovascular exercise performance. Rev Endocr Metab Disord 5:269–276. doi:10.1023/b:remd.0000032416.13070.01

    Article  PubMed  Google Scholar 

  • Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD (1995) Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest 96:1916–1926. doi:10.1172/jci118237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrage WG et al (2010) Roles of nitric oxide synthase and cyclooxygenase in leg vasodilation and oxygen consumption during prolonged low-intensity exercise in untrained humans. Journal of applied physiology (Bethesda, Md : 1985) 109:768–777. doi:10.1152/japplphysiol.00326.2010

    Article  CAS  Google Scholar 

  • Spier SA, Delp MD, Stallone JN, Dominguez JM 2nd, Muller-Delp JM (2007) Exercise training enhances flow-induced vasodilation in skeletal muscle resistance arteries of aged rats: role of PGI2 and nitric oxide. Am J Phys Heart Circ Phys 292:H3119–H3127. doi:10.1152/ajpheart.00588.2006

    CAS  Google Scholar 

  • Steensberg A et al (2007) Nitric oxide production is a proximal signaling event controlling exercise-induced mRNA expression in human skeletal muscle. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 21:2683–2694. doi:10.1096/fj.06-7477com

    Article  CAS  Google Scholar 

  • Suda O et al (2002) Long-term treatment with N(omega)-nitro-L-arginine methyl ester causes arteriosclerotic coronary lesions in endothelial nitric oxide synthase-deficient mice. Circulation 106:1729–1735

    Article  CAS  PubMed  Google Scholar 

  • Sun D et al (1999) Enhanced release of prostaglandins contributes to flow-induced arteriolar dilation in eNOS knockout mice. Circ Res 85:288–293

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Liu H, Yan C, Jacobson A, Ojaimi C, Huang A, Kaley G (2006) COX-2 contributes to the maintenance of flow-induced dilation in arterioles of eNOS-knockout mice. Am J Phys Heart Circ Phys 291:H1429–H1435. doi:10.1152/ajpheart.01130.2005

    CAS  Google Scholar 

  • Szabo C (2016) Gasotransmitters in cancer: from pathophysiology to experimental therapy nature reviews. Drug discovery 15:185–203. doi:10.1038/nrd.2015.1

    Article  CAS  PubMed  Google Scholar 

  • Szerafin T, Erdei N, Fulop T, Pasztor ET, Edes I, Koller A, Bagi Z (2006) Increased cyclooxygenase-2 expression and prostaglandin-mediated dilation in coronary arterioles of patients with diabetes mellitus. Circ Res 99:e12–e17. doi:10.1161/01.res.0000241051.83067.62

    Article  CAS  PubMed  Google Scholar 

  • Walker MA, Hoier B, Walker PJ, Schulze K, Bangsbo J, Hellsten Y, Askew CD (2015) Vasoactive enzymes and blood flow responses to passive and active exercise in peripheral arterial disease. Atherosclerosis 246:98–105. doi:10.1016/j.atherosclerosis.2015.12.029

    Article  PubMed  Google Scholar 

  • Wax D, Garofano R, Barst RJ (1999) Effects of long-term infusion of prostacyclin on exercise performance in patients with primary pulmonary hypertension. Chest 116:914–920

    Article  CAS  PubMed  Google Scholar 

  • Wensel R, Opitz CF, Ewert R, Bruch L, Kleber FX (2000) Effects of iloprost inhalation on exercise capacity and ventilatory efficiency in patients with primary pulmonary hypertension. Circulation 101:2388–2392

    Article  CAS  PubMed  Google Scholar 

  • Wilson RM, De Silva DS, Sato K, Izumiya Y, Sam F (2009) Effects of fixed-dose isosorbide dinitrate/hydralazine on diastolic function and exercise capacity in hypertension-induced diastolic heart failure. Hypertension 54:583–590. doi:10.1161/hypertensionaha.109.134932

    Article  CAS  PubMed  Google Scholar 

  • Wojewoda M et al (2015) Skeletal muscle response to endurance training in IL-6-/- mice. Int J Sports Med 36:1163–1169. doi:10.1055/s-0035-1555851

    Article  CAS  PubMed  Google Scholar 

  • Wojewoda M et al (2016) Exercise capacity and cardiac hemodynamic response in female ApoE/LDLR(−/−) mice: a paradox of preserved V'O2max and exercise capacity despite coronary atherosclerosis. Scientific reports 6:24714. doi:10.1038/srep24714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wylie LJ et al (2013) Beetroot juice and exercise: pharmacodynamic and dose-response relationships. Journal of applied physiology (Bethesda, Md : 1985) 115:325–336. doi:10.1152/japplphysiol.00372.2013

    Article  CAS  Google Scholar 

  • Zoladz JA, Gladden LB, Hogan MC, Nieckarz Z, Grassi B (2008) Progressive recruitment of muscle fibers is not necessary for the slow component of VO2 kinetics. Journal of applied physiology (Bethesda, Md : 1985) 105:575–580. doi:10.1152/japplphysiol.01129.2007

    Article  Google Scholar 

  • Zoladz JA, Majerczak J, Duda K, Chlopicki S (2009) Exercise-induced prostacyclin release positively correlates with VO(2max) in young healthy men. Physiological research / Academia Scientiarum Bohemoslovaca 58:229–238

    CAS  Google Scholar 

  • Zoladz JA, Majerczak J, Duda K, Chlopicki S (2010) Endurance training increases exercise-induced prostacyclin release in young, healthy men-relationship with VO2max. Pharmacological reports : PR 62:494–502

    Article  CAS  PubMed  Google Scholar 

  • Zoladz JA, Majerczak J, Duda K, Chlopicki S (2015) Coronary and muscle blood flow during physical exercise in humans; heterogenic alliance. Pharmacological reports : PR 67:719–727. doi:10.1016/j.pharep.2015.06.002

    Article  PubMed  Google Scholar 

  • Zoladz JA et al (2016) Mechanisms of attenuation of pulmonary V'O2 slow component in humans after prolonged endurance training. PLoS One 11:e0154135. doi:10.1371/journal.pone.0154135

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union from the resources of the European Regional Development Fund under the Innovative Economy Programme (grant coordinated by JCET-UJ, No. POIG.01.01.02-00-069/09). We are grateful to Ms. Krystyna Wandzel for the excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chlopicki.

Ethics declarations

Funding

This work was funded by the European Union from the resources of the European Regional Development Fund under the Innovative Economy Programme (grant coordinated by JCET-UJ, No. POIG.01.01.02-00-069/09).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojewoda, M., Przyborowski, K., Sitek, B. et al. Effects of chronic nitric oxide synthase inhibition on V’O2max and exercise capacity in mice. Naunyn-Schmiedeberg's Arch Pharmacol 390, 235–244 (2017). https://doi.org/10.1007/s00210-016-1318-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1318-3

Keywords

Navigation