Skip to main content
Log in

Antifibrotic effect of meloxicam in rat liver: role of nuclear factor kappa B, proinflammatory cytokines, and oxidative stress

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This study was aimed at investigating the antifibrotic effect of meloxicam in CCl4-induced liver fibrosis and elucidating its underlying mechanism. Forty male rats were equally randomized for 8-week treatment with corn oil (negative control), CCl4 (to induce liver fibrosis), and/or meloxicam. Meloxicam effectively ameliorated the CCl4-induced alterations in liver histology, liver weight to body weight ratio, liver functions, and serum markers for liver fibrosis (hyaluronic acid, laminin, and PCIII). Meloxicam significantly abrogated CCl4-induced elevation of messenger RNA (mRNA) expressions for collagen I and alpha smooth muscle actin (α-SMA) and hepatic contents of hydroxyproline, transforming growth factor beta (TGF-β), and tissue inhibitor of matrix metalloproteases (TIMP-1). Meloxicam mitigated CCl4-induced elevation in hepatic levels of nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α), total nitric oxide (NO), interleukin-l beta (IL 1β), and prostaglandin E2 (PGE2). Meloxicam modulated CCl4-induced disturbance of liver cytochrome P450 subfamily 2E1 (CYP2E1) and glutathione-S-transferase (GST). The attenuation of meloxicam to liver fibrosis was associated with suppression of oxidative stress via reduction of lipid peroxides along with induction of reduced glutathione content and enhancement of superoxide dismutase, glutathione peroxidase, and catalase activities. This study provides an evidence for antifibrotic effect of meloxicam against CCl4-induced liver fibrosis in rat. The antifibrotic mechanism of meloxicam could be through decreasing NF-κB level and subsequent proinflammatory cytokine production (TNF-α, NO, IL-1 beta, and PGE2) and, hence, collagen deposition through inhibition of TIMP-1 and TGF-β. Abrogation of oxidative stress and modulation of liver-metabolizing enzymes (CYP2E1 and GST) were also involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Moneim AM, Al-Kahtani MA, El-Kersh MA, Al-Omair MA (2015) Free radical-scavenging, anti-inflammatory/anti-fibrotic and hepatoprotective actions of taurine and silymarin against ccl4 induced rat liver damage. PLoS One 10(12):e0144509

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahn D, Putt D, Kresty L, Stoner GD, Fromm D, Hollenberg PF (1996) The effects of dietary ellagic acid on rat hepatic and esophageal mucosal cytochromes P450 and phase II enzymes. Carcinogenesis 17(4):821–828

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Mann DA (2004) Signal transduction via the NF-κB pathway: a targeted treatment modality for infection, inflammation and repair. Cell Biochem Funct 22:67–79

    Article  CAS  PubMed  Google Scholar 

  • Arafa HM, Abdel-Wahab MH, El-Shafeey MF, Badary OA, Hamada FM (2007) Anti-fibrotic effect of meloxicam in a murine lung fibrosis model. Eur J Pharmacol 564(1–3):181–189

    Article  CAS  PubMed  Google Scholar 

  • Baeuerle PA, Baichwal VR (1997) NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol 65:111–137

    Article  CAS  PubMed  Google Scholar 

  • Bahcecioglu IH, Koca SS, Poyrazoglu OK, Yalniz M, Ozercan IH, Ustundag B, Sahin K, Dagli AF, Isik A (2008) Hepatoprotective effect of infliximab, an anti-TNF-alpha agent, on carbon tetrachloride-induced hepatic fibrosis. Inflammation 31(4):215–221

    Article  CAS  PubMed  Google Scholar 

  • Bancroft J, Stevens A (1996) Enzyme histochemistry: theory and practice of histological techniques. Churchill Livingstone, New York

    Google Scholar 

  • Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson AM, Hunkeler MJ, Talalay P (1980) Increase of NADPH, quinone reductase activity by dietary antioxidant: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A 77:5216–5220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bissel DM, Friedman SL, Maher JJ, Roll FJ (1990) Connective tissue biology and hepatic fibrosis: report of a conference. Hepatology 11:488–498

    Article  Google Scholar 

  • Chang HF, Lin YH, Chu CC, Wu SJ, Tsai YH, Chao JC (2007) Protective effects of Ginkgo biloba, Panax ginseng, and Schizandra chinensis extract on liver injury in rats. Am J Chin Med 35(6):995–1009

    Article  CAS  PubMed  Google Scholar 

  • Chang TK, Crespi CL, Waxman DJ (1998) Spectrophotometric analysis of human CYP2E1-catalyzed p-nitrophenol hydroxylation. Methods Mol Biol 107:147–152

    CAS  PubMed  Google Scholar 

  • Chávez E, Castro-Sánchez L, Shibayama M, Tsutsumi V, Moreno MG, Muriel P (2012) Sulfasalazine prevents the increase in TGF-β, COX-2, nuclear NFκB translocation and fibrosis in CCl4-induced liver cirrhosis in the rat. Hum Exp Toxicol 31(9):913–920

    Article  PubMed  Google Scholar 

  • Cho MK, Lee GH, Park EY, Kim SG (2004) Hyaluronic acid inhibits adhesion of hepatic stellate cells in spite of its stimulation of DNA synthesis. Tissue Cell 36(5):293–305

    Article  CAS  PubMed  Google Scholar 

  • Clária J (2003) Cyclooxygenase-2 biology. Curr Pharm Des 9(27):2177–2190

    Article  PubMed  Google Scholar 

  • Dang SS, Wang BF, Cheng YA, Song P, Liu ZG, Li ZF (2007) Inhibitory effects of saikosaponin-d on CCl4-induced hepatic fibrogenesis in rats. World J Gastroenterol 13(4):557–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edfawy M, Hassan MH, Mansour A, Hamed AA, Amin HA (2012) Meloxicam modulates oxidative stress status, inhibits prostaglandin E2, and abrogates apoptosis in carbon tetrachloride-induced rat hepatic injury. Int J Toxicol 31(3):276–286

    Article  PubMed  Google Scholar 

  • Elsharkawy AM, Mann DA (2007) Nuclear factor-kappa B and the hepatic inflammation-fibrosis-cancer axis. Hepatology 46:590–597

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275:2247–2250

    Article  CAS  PubMed  Google Scholar 

  • Gabele E, Brenner DA, Rippe RA (2003) Liver fibrosis: signals leading to the amplification of the fibrogenic hepatic stellate cell. Front Biosci 8:D69–D77

    Article  CAS  PubMed  Google Scholar 

  • Galicia-Moreno M, Rodríguez-Rivera A, Reyes-Gordillo K, Segovia J, Shibayama M, Tsutsumi V, Vergara P, Moreno MG, Muriel P (2009) N-acetylcysteine prevents carbon tetrachloride-induced liver cirrhosis: role of liver transforming growth factor-beta and oxidative stress. Eur J Gastroenterol Hepatol 21(8):908–914

    Article  CAS  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jacob WB (1974) Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130e9

    Google Scholar 

  • Han HK, Choi HK (2007) Improved absorption of meloxicam via salt formation with ethanolamines. Eur J Pharm Biopharm 65:99–103

    Article  CAS  PubMed  Google Scholar 

  • Hassan MH, El-Beshbishy HA, Aly H, Attia SM, Bahashwan SA, Ghobara MM (2014a) Modulatory effects of meloxicam on cardiotoxicity and antitumor activity of doxorubicin in mice. Cancer Chemother Pharmacol 74(3):559–569

    Article  CAS  PubMed  Google Scholar 

  • Hassan MH, Ghobara M, Abd-Allah GM (2014b) Modulator effects of meloxicam against doxorubicin-induced nephrotoxicity in mice. J Biochem Mol Toxicol 28(8):337–346

    Article  CAS  PubMed  Google Scholar 

  • Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B (2009) Deaths: final data for 2006. Natl Vital Stat Rep 57(14):1–134

    PubMed  Google Scholar 

  • Hwang YP, Choi CY, Chung YC, Jeon SS, Jeong HG (2007) Protective effects of puerarin on carbon tetrachloride-induced hepatotoxicity. Arch Pharm Res 30(10):1309–1317

    Article  CAS  PubMed  Google Scholar 

  • Inao M, Mochida S, Matsui A, Eguchi Y, Yulutuz Y, Wang Y, Naiki K, Kakinuma T, Fujimori K, Nagoshi S, Fujiwara K (2004) Japanese herbal medicine Inchin-ko-to as a therapeutic drug for liver fibrosis. J Hepatol 41(4):584–591

    Article  PubMed  Google Scholar 

  • Johnson D, Lardy H (1967) Isolation of liver or kidney mitochondria. Methods Enzymol 10:94

    Article  CAS  Google Scholar 

  • Kawada N (2011) Evolution of hepatic fibrosis research. Hepatol Res 41:199–208

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Chu HJ, Kang DH, Song GA, Cho M, Yang US, Kim HJ, Chung HY (2002) NF-kappa B binding activity and cyclooxygenase-2 expression in persistent CCl(4)-treated rat liver injury. J Korean Med Sci 17:193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SM, Park KC, Kim HG, Han SJ (2008) Effect of selective cyclooxygenase-2 inhibitor meloxicam on liver fibrosis in rats with ligated common bile ducts. Hepatol Res 38(8):800–809

    Article  CAS  PubMed  Google Scholar 

  • Lopez PM, Martin P (2006) Update on liver transplantation: indications, organ allocation, and long-term care. Mount Sinai J Med 73:1056–1066

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Luedde T, Schwabe RF (2011) NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8(2):108–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannello F, Gazzanelli G (2001) Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implications. Apoptosis 6(6):479–482

    Article  CAS  PubMed  Google Scholar 

  • Mantawy EM, Tadros MG, Awad AS, Hassan DA, El-Demerdash E (2012) Insights antifibrotic mechanism of methyl palmitate: impact on nuclear factor kappa B and proinflammatory cytokines. Toxicol Appl Pharmacol 258(1):134–144

    Article  CAS  PubMed  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–744

    Article  CAS  PubMed  Google Scholar 

  • Miniño AM, Heron MP, Murphy SL, Kochanek KD (2007) Centers for Disease Control and Prevention National Center for Health Statistics National Vital Statistics System. Deaths: final data for 2004. Natl Vital Stat Rep 55(19):1–119

    PubMed  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Karube M, Matsuzaki Y, Ikegami T, Doy M, Tanaka N, Bouscarel B (2005) Taurine inhibits oxidative damage and prevents fibrosis in carbon tetrachloride-induced hepatic fibrosis. J Hepatol 43:117–12515

    Article  CAS  PubMed  Google Scholar 

  • Moron MS, Despierre JW, Minnervik B (1979) Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  PubMed  Google Scholar 

  • Muriel P (2007) Some experimental models of liver damage. In: Sahu S (ed) Hepatotoxicity: from genomics to in vitro and in vivo models. West Sussex, UK, Wiley Ltd, pp. 119–137

    Chapter  Google Scholar 

  • Muriel P, Escobar Y (2003) Kupffer cells are responsible for liver cirrhosis induced by carbon tetrachloride. J Appl Toxicol 23(2):103–108

    Article  CAS  PubMed  Google Scholar 

  • Muriel P, Rivera-Espinoza Y (2008) Beneficial drugs for liver diseases. J Appl Toxicol 28:93–103

    Article  CAS  PubMed  Google Scholar 

  • Nissen NN, Martin P (2002) Hepatocellular carcinoma: the high-risk patient. J Clin Gastroenterol 35(5 Suppl 2):S79–S85

    Article  CAS  PubMed  Google Scholar 

  • Núñez O, Fernández-Martínez A, Majano PL, Apolinario A, Gómez-Gonzalo M, Benedicto I, López-Cabrera M, Boscá L, Clemente G, García-Monzón C, Martín-Sanz P (2004) Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. Gut 53(11):1665–1672

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma T, Anan E, Hoashi R, Takeda Y, Nishiyama T, Ogura K, Hiratsuka A (2011) Dietary diacetylene falcarindiol induces phase 2 drug-metabolizing enzymes and blocks carbon tetrachloride-induced hepatotoxicity in mice through suppression of lipid peroxidation. Biol Pharm Bull 34(3):371–378

    Article  CAS  PubMed  Google Scholar 

  • Orfila C, Lepert JC, Alric L, Carrera G, Beraud M, Pipy B (2005) Immunohistochemical distribution of activated nuclear factor kappaB and peroxisome proliferator-activated receptors in carbon tetrachloride-induced chronic liver injury in rats. Histochem Cell Biol 123:585–593

    Article  CAS  PubMed  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantifications in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Planaguma A, Claria J, Miquel R, López-Parra M, Titos E, Masferrer JL, Arroyo V, Rodés J (2005) The selective cyclooxygenase-2 inhibitor SC-236 reduces liver fibrosis by mechanisms involving non-parenchymal cell apoptosis and PPARgamma activation. FASEB J 19(9):1120–1122

    CAS  PubMed  Google Scholar 

  • Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatol 43(Suppl. (1)):S54–S62

    Article  CAS  Google Scholar 

  • Ramadori G, Saile B (2004) Inflammation, damage repair, immune cells, and liver fibrosis: specific or nonspecific, this is the question. Gastroenterology 127(3):997–1000

    Article  CAS  PubMed  Google Scholar 

  • Reitman S, Frankel SA (1957) A colorimetric method for the determination of serum glutamic oxalocetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63

    Article  CAS  PubMed  Google Scholar 

  • Ripple MO, Henry WF, Schwarze SR, Wilding G, Weindruch R (1999) Effect of antioxidants on androgen-induced AP-1 and NF-kB DNA-binding activity in prostate carcinoma cells. J Natl Cancer Inst 91(14):1227–1232

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Rivera A, Galicia-Moreno M, Reyes-Gordillo K, Segovia J, Vergara P, Moreno MG, Shibayama M, Tsutsumi V, Muriel P (2008) Methyl palmitate prevents CCl4-induced liver fibrosis. J Appl Toxicol 28:1021–1026

    Article  CAS  PubMed  Google Scholar 

  • Sakaida I, Matsumura Y, Kubota M, Kayano K, Takenaka K, Okita K (1996) The prolyl 4-hydroxylase inhibitor HOE 077 prevents activation of Ito cells, reducing procollagen gene expression in rat liver fibrosis induced by choline-deficient L-amino acid-defined diet. Hepatology 23(4):755–763

    CAS  PubMed  Google Scholar 

  • Simile MM, Banni S, Angioni E, Carta G, De Miglio MR, Muroni MR, Calvisi DF, Carru A, Pascale RM, Feo F (2001) 5′-Methylthioadenosine administration prevents lipid peroxidation and fibrogenesis induced in rat liver by carbon-tetrachloride intoxication. J Hepatol 34(3):386–394

    Article  CAS  PubMed  Google Scholar 

  • Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47(2):389–394

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Che QM, Zhao X, Pu XP (2010) Antifibrotic effects of chronic baicalein administration in a CCl4 liver fibrosis model in rats. Eur J Pharmacol 631(1–3):53–60

    Article  CAS  PubMed  Google Scholar 

  • Tipoe GL, Leung TM, Liong EC, Lau TY, Fung ML, Nanji AA (2010) Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology 273:45–52

    Article  CAS  PubMed  Google Scholar 

  • Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38:1654–1661

    Article  CAS  PubMed  Google Scholar 

  • Wahl C, Liptay S, Adler G, Schmid M (1997) Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J Clin Invest 101:1167–1174

    Google Scholar 

  • Weber L, Boll M, Stampfl A (2003) Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 33:105–136

    Article  CAS  PubMed  Google Scholar 

  • Wen SL, Gao JH, Yang WJ, Lu YY, Tong H, Huang ZY, Liu ZX, Tang CW (2014) Celecoxib attenuates hepatic cirrhosis through inhibition of epithelial-to-mesenchymal transition of hepatocytes. J Gastroenterol Hepatol 29(11):1932–1942

    Article  CAS  PubMed  Google Scholar 

  • Xie SB, Yao JL, Zheng SS, Yao CL, Zheng RQ (2002) The levels of serum fibrosis marks and morphometric quantitative measurement of hepatic fibrosis. Hepatobiliary Pancreat Dis Int 1(2):202–206

    PubMed  Google Scholar 

  • Yachi R, Igarashi O, Kiyose C (2010) Protective effects of vitamin E analogs against carbon tetrachloride-induced fatty liver in rats. J Clin Biochem Nutr 47(2):148–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Memy H. Hassan.

Ethics declarations

Funding

The authors disclosed receipt of the full financial support and funding from the Deanship of Scientific Research, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia (Grant number 4085–1434).

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in our study involving animals were in accordance with the ethical standards and guidelines from the Ethics Committee of the Experimental Animal Care Society, Taibah University, Kingdom of Saudi Arabia. The protocol approval number is TUCDREC/20160121/Hassan. In addition, all applicable international and national guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.H., Ghobara, M.M. Antifibrotic effect of meloxicam in rat liver: role of nuclear factor kappa B, proinflammatory cytokines, and oxidative stress. Naunyn-Schmiedeberg's Arch Pharmacol 389, 971–983 (2016). https://doi.org/10.1007/s00210-016-1263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1263-1

Keywords

Navigation