Skip to main content
Log in

Structure-activity relationship of vasoactive intestinal peptide (VIP): potent agonists and potential clinical applications

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Vasoactive intestinal peptide (VIP) has been identified as one of major peptide transmitters in the central and peripheral nervous systems, being involved in a wide range of biological functions. The general physiologic effects of VIP include vasodilation, anti-inflammatory actions, cell proliferation, hormonal secretion, regulation of gastric motility, and smooth muscle relaxation; therefore, VIP has emerged as a promising drug candidate for the treatment of several diseases. A number of clinical applications of VIP or its derivatives have been developed; however, VIP-based drugs are not yet in clinical use, possibly because of mainly two serious problems: (1) poor metabolic stability and (2) poor penetration to the desired site of action. To overcome these shortcomings, the development of efficacious VIP analogues and several drug delivery systems has been attempted on the basis of numerous structure–activity relationships (SAR) studies and pharmacological experiments. Combination of the use of potent VIP analogues and an appropriate drug delivery system might be advantageous for the VIP-based therapy. We review in this paper SAR studies of VIP for the identification of potent therapeutic agents, describe the development of selective and/or metabolically stable VIP receptor agonists/antagonists, and discuss the potential application for clinical treatment using drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abad C, Martinez C, Juarranz MG, Arranz A, Leceta J, Delgado M, Gomariz RP (2003) Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn’s disease. Gastroenterology 124:961–971

    PubMed  CAS  Google Scholar 

  • Abad C, Gomariz RP, Waschek JA (2006) Neuropeptide mimetics and antagonists in the treatment of inflammatory disease: focus on VIP and PACAP. Curr Top Med Chem 6:151–163

    PubMed  CAS  Google Scholar 

  • Ashok B, Rubinstein I, Tsueshita T, Onyuksel H (2004) Effects of peptide molecular mass and PEG chain length on the vasoreactivity of VIP and PACAP(1–38) in pegylated phospholipid micelles. Peptides 25:1253–1258

    PubMed  CAS  Google Scholar 

  • Basille M, Vaudry D, Coulouarn Y, Jegou S, Lihrmann I, Fournier A, Vaudry H, Gonzalez B (2000) Comparative distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites and PACAP receptor mRNAs in the rat brain during development. J Comp Neurol 425:495–509

    PubMed  CAS  Google Scholar 

  • Biancani P, Beinfeld MC, Coy DH, Hillemeier C, Walsh JH, Behar J (1988) Dysfunction of the gastrointestinal peptide in peristalsis and sphincter function. Ann N Y Acad Sci 527:545–567

    Google Scholar 

  • Bickel U, Yoshikawa T, Landaw EM, Faull KF, Pardridge WM (1993) Pharmacologic effects in vivo in brain by vector-mediated peptide drug delivery. Proc Natl Acad Sci U S A 90:2618–2622

    PubMed  CAS  Google Scholar 

  • Blankenfeldt W, Nokihara K, Naruse S, Lessel U, Schomburg D, Wray V (1996) NMR spectroscopic evidence that helodermin, unlike other members of the secretin/VIP family of peptides, is substantially structured in water. Biochemistry 35:5955–5962

    PubMed  CAS  Google Scholar 

  • Bodanszky M, Bodanszky A (1986) Conformation of peptides of the secretin–VIP–glucagon family in solution. Peptides 7:43–48

    PubMed  CAS  Google Scholar 

  • Bodanszky M, Bodanszky A, Klausner YS, Said SI (1974) A preferred conformation in the vasoactive intestinal peptide (VIP). Molecular architecture of gastrointestinal hormones. Bioorg Chem 3:133–140

    CAS  Google Scholar 

  • Bolin DR, Cottrell JM, O’Neill N, Garippa R, O’Donnell M (1989) N-terminal analogs of vasoactive intestinal peptide: Identification of a binding pharmacophore. In: Rivier JE, Marshall GR (eds) 11th American Peptide Symposium. ESCON Scientific, Leiden, The Netherlands, La Jolla, CA, pp 208–210

    Google Scholar 

  • Bolin DR, Cottrell J, Michalewsky J, Garippa R, O’Neill N, Simko B, O’Donnell M (1992) Degradation of vasoactive intestinal peptide in bronchoalveolar lavage fluid. Biomed Res 13:25–30

    Google Scholar 

  • Bolin DR, Cottrell J, Garippa R, O’Neill N, Simko B, O’Donnell M (1993) Structure-activity studies of vasoactive intestinal peptide (VIP): cyclic disulfide analogs. Int J Pept Protein Res 41:124–132

    Article  PubMed  CAS  Google Scholar 

  • Bolin DR, Michalewsky J, Wasserman MA, O’Donnell M (1995) Design and development of a vasoactive intestinal peptide analog as a novel therapeutic for bronchial asthma. Biopolymers 37:57–66

    PubMed  CAS  Google Scholar 

  • Clore GM, Nilges M, Brunger A, Gronenborn AM (1988) Determination of the backbone conformation of secretin by restrained molecular dynamics on the basis of interproton distance data. Eur J Biochem 171:479–484

    PubMed  CAS  Google Scholar 

  • Delgado M, Martinez C, Pozo D, Calvo JR, Leceta J, Ganea D, Gomariz RP (1999a) Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-6. J Immunol 162:1200–1205

    PubMed  CAS  Google Scholar 

  • Delgado M, Munoz-Elias EJ, Gomariz RP, Ganea D (1999b) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide prevent inducible nitric oxide synthase transcription in macrophages by inhibiting NF-kappa B and IFN regulatory factor 1 activation. J Immunol 162:4685–4696

    PubMed  CAS  Google Scholar 

  • Delgado M, Abad C, Martinez C, Leceta J, Gomariz RP (2001) Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat Med 7:563–568

    PubMed  CAS  Google Scholar 

  • Dinsmore WW, Gingell C, Hackett G, Kell P, Savage D, Oakes R, Frentz GD (1999) Treating men with predominantly nonpsychogenic erectile dysfunction with intracavernosal vasoactive intestinal polypeptide and phentolamine mesylate in a novel auto-injector system: a multicentre double-blind placebo-controlled study. BJU Int 83:274–279

    PubMed  CAS  Google Scholar 

  • Domschke S, Domschke W, Bloom SR, Mitznegg P, Mitchell SJ, Lux G, Strunz U (1978) Vasoactive intestinal peptide in man: pharmacokinetics, metabolic and circulatory effects. Gut 19:1049–1053

    PubMed  CAS  Google Scholar 

  • Dufes C, Olivier JC, Gaillard F, Gaillard A, Couet W, Muller JM (2003) Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. Int J Pharm 255:87–97

    PubMed  CAS  Google Scholar 

  • Dufes C, Gaillard F, Uchegbu IF, Schatzlein AG, Olivier JC, Muller JM (2004) Glucose-targeted niosomes deliver vasoactive intestinal peptide (VIP) to the brain. Int J Pharm 285:77–85

    PubMed  CAS  Google Scholar 

  • Filipsson K, Sundler F, Hannibal J, Ahren B (1998) PACAP and PACAP receptors in insulin producing tissues: localization and effects. Regul Pept 74:167–175

    PubMed  CAS  Google Scholar 

  • Filipsson K, Kvist-Reimer M, Ahren B (2001) The neuropeptide pituitary adenylate cyclase-activating polypeptide and islet function. Diabetes 50:1959–1969

    PubMed  CAS  Google Scholar 

  • Filizola M, Carteni-Farina M, Perez JJ (1997) Conformational study of vasoactive intestinal peptide by computational methods. J Pept Res 50:55–64

    Article  PubMed  CAS  Google Scholar 

  • Goossens JF, Cotelle P, Chavatte P, Henichart JP (1996) NMR study of five N-terminal peptide fragments of the vasoactive intestinal peptide: crucial role of aromatic residues. Pept Res 9:322–326

    PubMed  CAS  Google Scholar 

  • Gourlet P, Vandermeers A, Vandermeers-Piret MC, De Neef P, Robberecht P (1996a) Addition of the (28–38) peptide sequence of PACAP to the VIP sequence modifies peptide selectivity and efficacy. Int J Pept Protein Res 48:391–396

    Article  PubMed  CAS  Google Scholar 

  • Gourlet P, Vilardaga JP, De Neef P, Waelbroeck M, Vandermeers A, Robberecht P (1996b) The C-terminus ends of secretin and VIP interact with the N-terminal domains of their receptors. Peptides 17:825–829

    PubMed  CAS  Google Scholar 

  • Gourlet P, De Neef P, Cnudde J, Waelbroeck M, Robberecht P (1997a) In vitro properties of a high affinity selective antagonist of the VIP1 receptor. Peptides 18:1555–1560

    PubMed  CAS  Google Scholar 

  • Gourlet P, Vandermeers A, Vertongen P, Rathe J, De Neef P, Cnudde J, Waelbroeck M, Robberecht P (1997b) Development of high affinity selective VIP1 receptor agonists. Peptides 18:1539–1545

    PubMed  CAS  Google Scholar 

  • Gourlet P, Rathe J, De Neef P, Cnudde J, Vandermeers-Piret MC, Waelbroeck M, Robberecht P (1998) Interaction of lipophilic VIP derivatives with recombinant VIP1/PACAP and VIP2/PACAP receptors. Eur J Pharmacol 354:105–111

    PubMed  CAS  Google Scholar 

  • Gozes I, Furman S (2003) VIP and drug design. Curr Pharm Des 9:483–494

    PubMed  CAS  Google Scholar 

  • Gozes I, Furman S (2004) Clinical endocrinology and metabolism. Potential clinical applications of vasoactive intestinal peptide: a selected update. Best Pract Res Clin Endocrinol Metab 18:623–640

    PubMed  CAS  Google Scholar 

  • Gozes I, Meltzer E, Rubinrout S, Brenneman DE, Fridkin M (1989) Vasoactive intestinal peptide potentiates sexual behavior: inhibition by novel antagonist. Endocrinology 125:2945–2949

    PubMed  CAS  Google Scholar 

  • Gozes I, Perl O, Giladi E, Davidson A, Ashur-Fabian O, Rubinraut S, Fridkin M (1999) Mapping the active site in vasoactive intestinal peptide to a core of four amino acids: neuroprotective drug design. Proc Natl Acad Sci U S A 96:4143–4148

    PubMed  CAS  Google Scholar 

  • Granoth R, Fridkin M, Gozes I (2000) VIP and the potent analog, stearyl-Nle(17)-VIP, induce proliferation of keratinocytes. FEBS Lett 475:78–83

    PubMed  CAS  Google Scholar 

  • Groneberg DA, Rabe KF, Fischer A (2006) Novel concepts of neuropeptide-based drug therapy: vasoactive intestinal polypeptide and its receptors. Eur J Pharmacol 533:182–194

    PubMed  CAS  Google Scholar 

  • Haghjoo K, Cash PW, Farid RS, Komisaruk BR, Jordan F, Pochapsky SS (1996) Solution structure of vasoactive intestinal polypeptide (11–28)-NH2, a fragment with analgesic properties. Pept Res 9:327–331

    PubMed  CAS  Google Scholar 

  • Hashimoto H, Ishihara T, Shigemoto R, Mori K, Nagata S (1993) Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron 11:333–342

    PubMed  CAS  Google Scholar 

  • Hassan M, Refai E, Andersson M, Schnell PO, Jacobsson H (1994) In vivo dynamical distribution of 131I-VIP in the rat studied by gamma-camera. Nucl Med Biol 21:865–872

    PubMed  CAS  Google Scholar 

  • Hoshino M, Yanaihara C, Hong YM, Kishida S, Katsumaru Y, Vandermeers A, Vandermeers-Piret MC, Robberecht P, Christophe J, Yanaihara N (1984) Primary structure of helodermin, a VIP-secretin-like peptide isolated from Gila monster venom. FEBS Lett 178:233–239

    PubMed  CAS  Google Scholar 

  • Igarashi H, Ito T, Hou W, Mantey SA, Pradhan TK, Ulrich CD 2nd, Hocart SJ, Coy DH, Jensen RT (2002) Elucidation of vasoactive intestinal peptide pharmacophore for VPAC(1) receptors in human, rat, and guinea pig. J Pharmacol Exp Ther 301:37–50

    PubMed  CAS  Google Scholar 

  • Igarashi H, Ito T, Mantey SA, Pradhan TK, Hou W, Coy DH, Jensen RT (2005) Development of simplified vasoactive intestinal peptide analogs with receptor selectivity and stability for human vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide receptors. J Pharmacol Exp Ther 315:370–381

    PubMed  CAS  Google Scholar 

  • Inooka H, Ohtaki T, Kitahara O, Ikegami T, Endo S, Kitada C, Ogi K, Onda H, Fujino M, Shirakawa M (2001) Conformation of a peptide ligand bound to its G-protein coupled receptor. Nat Struct Biol 8:161–165

    PubMed  CAS  Google Scholar 

  • Ito O, Tachibana S (1991) Vasoactive intestinal polypeptide precursors have highly potent bronchodilatory activity. Peptides 12:131–137

    PubMed  CAS  Google Scholar 

  • Ito T, Igarashi H, Pradhan TK, Hou W, Mantey SA, Taylor JE, Murphy WA, Coy DH, Jensen RT (2001) GI side-effects of a possible therapeutic GRF analogue in monkeys are likely due to VIP receptor agonist activity. Peptides 22:1139–1151

    PubMed  CAS  Google Scholar 

  • Jorpes JE (1968) The isolation and chemistry of secretin and cholecystokinin. Gastroenterology 55:157–164

    PubMed  CAS  Google Scholar 

  • Kashimoto K, Nagano Y, Suitani Y, Hamanaka K, Mizumoto T, Tomizaki K, Takahata H, Nagamoto A, Ohata A, Yoshihara S, Ichimura T (1996a) Structure–activity relationship studies of PACAP-27 and VIP analogues. Ann N Y Acad Sci 805:505–510

    Article  PubMed  CAS  Google Scholar 

  • Kashimoto K, Nagano Y, Suitani Y, Hamanaka K, Takahata H, Ohata A, Urauchi E, Watanabe S (1996b) The interaction studies of VIP and VIP analogue with glycosaminoglycan. In: Japanese Peptide Symposium, Tsukuba, Japan, pp 249–252

  • Kato H, Ito A, Kawanokuchi J, Jin S, Mizuno T, Ojika K, Ueda R, Suzumura A (2004) Pituitary adenylate cyclase-activating polypeptide (PACAP) ameliorates experimental autoimmune encephalomyelitis by suppressing the functions of antigen presenting cells. Mult Scler 10:651–659

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Takeshima K, Park CB, Kim SC, Matsuzaki K (2000) Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry 39:8648–8654

    PubMed  CAS  Google Scholar 

  • Laburthe M, Couvineau A, Gaudin P, Maoret JJ, Rouyer-Fessard C, Nicole P (1996) Receptors for VIP, PACAP, secretin, GRF, glucagon, GLP-1, and other members of their new family of G protein-linked receptors: structure–function relationship with special reference to the human VIP-1 receptor. Ann N Y Acad Sci 805:94–109

    Article  PubMed  CAS  Google Scholar 

  • Lilly CM, Drazen JM, Shore SA (1993) Peptidase modulation of airway effects of neuropeptides. Proc Soc Exp Biol Med 203:388–404

    PubMed  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    PubMed  CAS  Google Scholar 

  • Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, Minamino N, Arimura A (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170:643–648

    PubMed  CAS  Google Scholar 

  • Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619

    Article  PubMed  CAS  Google Scholar 

  • Moreno D, Gourlet P, De Neef P, Cnudde J, Waelbroeck M, Robberecht P (2000) Development of selective agonists and antagonists for the human vasoactive intestinal polypeptide VPAC(2) receptor. Peptides 21:1543–1549

    PubMed  CAS  Google Scholar 

  • Morice A, Unwin RJ, Sever PS (1983) Vasoactive intestinal peptide causes bronchodilatation and protects against histamine-induced bronchoconstriction in asthmatic subjects. Lancet 2:1225–1227

    PubMed  CAS  Google Scholar 

  • Nicole P, Lins L, Rouyer-Fessard C, Drouot C, Fulcrand P, Thomas A, Couvineau A, Martinez J, Brasseur R, Laburthe M (2000) Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem 275:24003–24012

    PubMed  CAS  Google Scholar 

  • O’Donnell M, Garippa RJ, O'Neill NC, Bolin DR, Cottrell JM (1991) Structure–activity studies of vasoactive intestinal polypeptide. J Biol Chem 266:6389–6392

    PubMed  CAS  Google Scholar 

  • O’Donnell M, Garippa RJ, Rinaldi N, Selig WM, Tocker JE, Tannu SA, Wasserman MA, Welton A, Bolin DR (1994) Ro 25-1553: a novel, long-acting vasoactive intestinal peptide agonist. Part II: Effect on in vitro and in vivo models of pulmonary anaphylaxis. J Pharmacol Exp Ther 270:1289–1294

    PubMed  CAS  Google Scholar 

  • Ohmori Y, Maruyama S, Kimura R, Onoue S, Matsumoto A, Endo K, Iwanaga T, Kashimoto K, Yamada S (2004) Pharmacological effects and lung-binding characteristics of a novel VIP analogue, [R15, 20, 21, L17]-VIP-GRR (IK312532). Regul Pept 123:201–207

    PubMed  CAS  Google Scholar 

  • Ohmori Y, Onoue S, Endo K, Matsumoto A, Uchida S, Yamada S (2006) Development of dry powder inhalation system of novel vasoactive intestinal peptide (VIP) analogue for pulmonary administration. Life Sci 79:138–143

    PubMed  CAS  Google Scholar 

  • Onoue S, Nagano Y, Tatsuno I, Uchida D, Kashimoto K (1999) Receptor-binding specificity depending on N-terminal structure of VIP/PACAP. Biomed Res 20:219–231

    CAS  Google Scholar 

  • Onoue S, Waki Y, Hamanaka K, Takehiko Y, Kashimoto K (2001a) Vasoactive intestinal peptide regulates catecholamine secretion in rat PC12 cells through the pituitary adenylate cyclase activating polypeptide receptor. Biomed Res 22:77–82

    CAS  Google Scholar 

  • Onoue S, Waki Y, Nagano Y, Satoh S, Kashimoto K (2001b) The neuromodulatory effects of VIP/PACAP on PC-12 cells are associated with their N-terminal structures. Peptides 22:867–872

    PubMed  CAS  Google Scholar 

  • Onoue S, Endo K, Ohmori Y, Yamada S, Kimura R, Yajima T, Kashimoto K (2004a) Long-acting analogue of vasoactive intestinal peptide, [R15, 20, 21, L17]-VIP-GRR (IK312532), protects rat alveolar L2 cells from the cytotoxicity of cigarette smoke. Regul Pept 123:193–199

    PubMed  CAS  Google Scholar 

  • Onoue S, Matsumoto A, Nagano Y, Ohshima K, Ohmori Y, Yamada S, Kimura R, Yajima T, Kashimoto K (2004b) Alpha-helical structure in the C-terminus of vasoactive intestinal peptide: functional and structural consequences. Eur J Pharmacol 485:307–316

    PubMed  CAS  Google Scholar 

  • Onoue S, Ohmori Y, Endo K, Yamada S, Kimura R, Yajima T (2004c) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide attenuate the cigarette smoke extract-induced apoptotic death of rat alveolar L2 cells. Eur J Biochem 271:1757–1767

    PubMed  CAS  Google Scholar 

  • Onoue S, Ohmori Y, Matsumoto A, Yamada S, Kimura R, Yajima T, Kashimoto K (2004d) Structure-activity relationship of synthetic truncated analogues of vasoactive intestinal peptide (VIP): an enhancement in the activity by a substitution with arginine. Life Sci 74:1465–1477

    PubMed  CAS  Google Scholar 

  • Onoue S, Yamada S, Yajima T (2007) Bioactive analogues and drug delivery systems of vasoactive intestinal peptide (VIP) for the treatment of asthma/COPD. Peptides 28(9):1640–1650

    PubMed  CAS  Google Scholar 

  • Pan CQ, Li F, Tom I, Wang W, Dumas M, Froland W, Yung SL, Li Y, Roczniak S, Claus TH, Wang YJ, Whelan JP (2007) Engineering novel VPAC2-selective agonists with improved stability and glucose-lowering activity in vivo. J Pharmacol Exp Ther 320:900–906

    PubMed  CAS  Google Scholar 

  • Pandol SJ, Dharmsathaphorn K, Schoeffield MS, Vale W, Rivier J (1986) Vasoactive intestinal peptide receptor antagonist [4Cl-D-Phe6, Leu17] VIP. Am J Physiol 250:G553–G557

    PubMed  CAS  Google Scholar 

  • Park IY, Park CB, Kim MS, Kim SC (1998) Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett 437:258–262

    PubMed  CAS  Google Scholar 

  • Paul S, Said SI (1987) Characterization of receptors for vasoactive intestinal peptide solubilized from the lung. J Biol Chem 262:158–162

    PubMed  CAS  Google Scholar 

  • Petkov V, Mosgoeller W, Ziesche R, Raderer M, Stiebellehner L, Vonbank K, Funk GC, Hamilton G, Novotny C, Burian B, Block LH (2003) Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest 111:1339–1346

    PubMed  CAS  Google Scholar 

  • Pozo D (2003) VIP- and PACAP-mediated immunomodulation as prospective therapeutic tools. Trends Mol Med 9:211–217

    PubMed  CAS  Google Scholar 

  • Rawlings SR, Hezareh M (1996) Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: actions on the anterior pituitary gland. Endocr Rev 17:4–29

    PubMed  CAS  Google Scholar 

  • Riddle MC, Drucker DJ (2006) Emerging therapies mimicking the effects of amylin and glucagon-like peptide 1. Diabetes Care 29:435–449

    PubMed  CAS  Google Scholar 

  • Rivier J, Spiess J, Thorner M, Vale W (1982) Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature 300:276–278

    PubMed  CAS  Google Scholar 

  • Robberecht P, De Neef P, Lefebvre RA (1998) Influence of selective VIP receptor agonists in the rat gastric fundus. Eur J Pharmacol 359:77–80

    PubMed  CAS  Google Scholar 

  • Robinson RM, Blakeney EW Jr., Mattice WL (1982) Lipid-induced conformational changes in glucagon, secretin, and vasoactive intestinal peptide. Biopolymers 21:1271–1228

    PubMed  CAS  Google Scholar 

  • Rubinstein I, Dagar S, Sethi V, Krishnadas A, Onyuksel H (2001) Liposomal VIP potentiates DNA synthesis in cultured oral keratinocytes. Peptides 22:671–675

    PubMed  CAS  Google Scholar 

  • Saetrum Opgaard O, Knutsson M, de Vries R, Tom B, Saxena PR, Edvinsson L (2001) Vasoactive intestinal peptide has a direct positive inotropic effect on isolated human myocardial trabeculae. Clin Sci (Lond) 101:637–643

    Article  CAS  Google Scholar 

  • Said SI (1989) Vasoactive intestinal polypeptide and asthma [editorial]. N Engl J Med 320:1271–1273

    Article  PubMed  CAS  Google Scholar 

  • Said SI (1991) Vasoactive intestinal polypeptide (VIP) in asthma. Ann N Y Acad Sci 629:305–318

    PubMed  CAS  Google Scholar 

  • Said SI, Mutt V (1970) Polypeptide with broad biological activity: isolation from the small intestine. Science 169:1217–1218

    PubMed  CAS  Google Scholar 

  • Said SI, Dickman KG (2000) Pathways of inflammation and cell death in the lung: modulation by vasoactive intestinal peptide. Regul Pept 93:21–29

    PubMed  CAS  Google Scholar 

  • Sakiyama A, Kitada C, Watanabe T, Masuda Y, Fujino M (1991) Structure–activity relationship of pituitary adenylate cyclase activating polypeptide (PACAP). In: Suzuki A (ed) Japanese Peptide Symposium. Protein Research Foundation, Osaka, pp 215–220

    Google Scholar 

  • Sergejeva S, Hoshino H, Yoshihara S, Kashimoto K, Lotvall J, Linden A (2004) A synthetic VIP peptide analogue inhibits neutrophil recruitment in rat airways in vivo. Regul Pept 117:149–154

    PubMed  CAS  Google Scholar 

  • Shivers BD, Gorcs TJ, Gottschall PE, Arimura A (1991) Two high affinity binding sites for pituitary adenylate cyclase-activating polypeptide have different tissue distributions. Endocrinology 128:3055–3065

    Article  PubMed  CAS  Google Scholar 

  • Solano RM, Langer I, Perret J, Vertongen P, Juarranz MG, Robberecht P, Waelbroeck M (2001) Two basic residues of the h-VPAC1 receptor second transmembrane helix are essential for ligand binding and signal transduction. J Biol Chem 276:1084–1088

    PubMed  CAS  Google Scholar 

  • Stiuso P, Marabotti A, Facchiano A, Lepretti M, Dicitore A, Ferranti P, Carteni M (2006) Assessment of the conformational features of vasoactive intestinal peptide in solution by limited proteolysis experiments. Biopolymers 81:110–119

    PubMed  CAS  Google Scholar 

  • Suzuki H, Noda Y, Paul S, Gao XP, Rubinstein I (1995) Encapsulation of vasoactive intestinal peptide into liposomes: effects on vasodilation in vivo. Life Sci 57:1451–1457

    PubMed  CAS  Google Scholar 

  • Takubo T, Banks K, Martin JG (1991) Epithelium modulates the potency of vasoactive intestinal peptide in the guinea pig. J Appl Physiol 71:2146–2151

    PubMed  CAS  Google Scholar 

  • Tams JW, Jorgensen RM, Holm A, Fahrenkrug J (2000) Creation of a selective antagonist and agonist of the rat VPAC(1) receptor using a combinatorial approach with vasoactive intestinal peptide 6–23 as template. Mol Pharmacol 58:1035–1041

    PubMed  CAS  Google Scholar 

  • Taylor DP, Pert CB (1979) Vasoactive intestinal polypeptide: specific binding to rat brain membranes. Proc Natl Acad Sci U S A 76:660–664

    PubMed  CAS  Google Scholar 

  • Thornton K, Gorenstein DG (1994) Structure of glucagon-like peptide (7–36) amide in a dodecylphosphocholine micelle as determined by 2D NMR. Biochemistry 33:3532–3539

    PubMed  CAS  Google Scholar 

  • Tsutsumi M, Claus TH, Liang Y, Li Y, Yang L, Zhu J, Dela Cruz F, Peng X, Chen H, Yung SL, Hamren S, Livingston JN, Pan CQ (2002) A potent and highly selective VPAC2 agonist enhances glucose-induced insulin release and glucose disposal: a potential therapy for type 2 diabetes. Diabetes 51:1453–1460

    PubMed  CAS  Google Scholar 

  • Unger RH, Dobbs RE, Orci L (1978) Insulin, glucagon, and somatostatin secretion in the regulation of metabolism. Annu Rev Physiol 40:307–343

    PubMed  CAS  Google Scholar 

  • Usdin TB, Bonner TI, Mezey E (1994) Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 135:2662–2680

    PubMed  CAS  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52:269–324

    PubMed  CAS  Google Scholar 

  • Waelbroeck M, Robberecht P, Coy DH, Camus JC, De Neef P, Christophe J (1985) Interaction of growth hormone-releasing factor (GRF) and 14 GRF analogs with vasoactive intestinal peptide (VIP) receptors of rat pancreas. Discovery of (N-Ac-Tyr1,D-Phe2)-GRF(1–29)-NH2 as a VIP antagonist. Endocrinology 116:2643–2649

    PubMed  CAS  Google Scholar 

  • Wray V, Kakoschke C, Nokihara K, Naruse S (1993) Solution structure of pituitary adenylate cyclase activating polypeptide by nuclear magnetic resonance spectroscopy. Biochemistry 32:5832–5841

    PubMed  CAS  Google Scholar 

  • Wray V, Nokihara K, Naruse S (1998) Solution structure comparison of the VIP/PACAP family of peptides by NMR spectroscopy. Ann N Y Acad Sci 865:37–44

    PubMed  CAS  Google Scholar 

  • Wuthrich K (1989) Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243:45–50

    PubMed  CAS  Google Scholar 

  • Wuthrich K (1998) The second decade—into the third millenium. Nat Struct Biol 5(Suppl):492–495

    PubMed  CAS  Google Scholar 

  • Xia M, Sreedharan SP, Bolin DR, Gaufo GO, Goetzl EJ (1997) Novel cyclic peptide agonist of high potency and selectivity for the type II vasoactive intestinal peptide receptor. J Pharmacol Exp Ther 281:629–633

    PubMed  CAS  Google Scholar 

  • Yajima Y, Akita Y, Saito T, Kawashima S (1998) VIP induces the translocation and degradation of the alpha subunit of Gs protein in rat pituitary GH4C1 cells. J Biochem (Tokyo) 123:1024–1030

    CAS  Google Scholar 

  • Yoshihara S, Yamada Y, Abe T, Kashimoto K, Linden A, Arisaka O (2004) Long-lasting smooth-muscle relaxation by a novel PACAP analogue in human bronchi. Regul Pept 123:161–165

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satomi Onoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onoue, S., Misaka, S. & Yamada, S. Structure-activity relationship of vasoactive intestinal peptide (VIP): potent agonists and potential clinical applications. Naunyn-Schmied Arch Pharmacol 377, 579–590 (2008). https://doi.org/10.1007/s00210-007-0232-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0232-0

Keywords

Navigation