Skip to main content
Log in

Comparative study of the vasorelaxant activity, superoxide-scavenging ability and cyclic nucleotide phosphodiesterase-inhibitory effects of hesperetin and hesperidin

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This study investigated the vasorelaxant activity, superoxide radicals (O2•−)-scavenging capacity and cyclic nucleotide phosphodiesterase (PDE)-inhibitory effects of hesperidin and hesperetin, two flavonoids mainly isolated from citrus fruits. Hesperetin concentration-dependently relaxed the isometric contractions induced by noradrenaline (NA, 1 μM) or by a high extracellular KCl concentration (60 mM) in intact rat isolated thoracic aorta rings. However, hesperetin (10 μM–0.3 mM) did not affect the contractile response induced by okadaic acid (OA, 1 μM). Mechanical removal of endothelium and/or pretreatment of aorta rings with glibenclamide (GB, 10 μM), tetraethylammonium (TEA, 2 mM) or nifedipine (0.1 μM) did not significantly modify the vasorelaxant effects of this flavonoid. Hesperetin (10 μM–0.1 mM) did not affect the basal uptake of 45Ca2+ but decreased the influx of 45Ca2+ induced by NA and KCl in endothelium-containing and endothelium-denuded rat aorta. Hesperetin (10 μM–0.1 mM) did not scavenge O2•− generated by the phenazine methosulfate (PMS)-reduced β-nicotinamide adenine dinucleotide (NADH) system. Hesperetin (0.1 mM) significantly reversed the inhibitory effects of NA (1 μM) and high KCl (60 mM) on cyclic nucleotide (cAMP and cGMP) production in cultured rat aortic myocytes. Hesperetin preferentially inhibited calmodulin (CaM)-activated PDE1 and PDE4 isolated from bovine aorta with IC50 values of about 74 μM and 70 μM respectively. In contrast, the 7-rhamnoglucoside of hesperetin, hesperidin (10 μM–0.1 mM), was inactive in practically all experiments, although it inhibited basal and cGMP-activated PDE2 isolated from platelets (IC50 values of 32±4 μM and 137±34 μM respectively). These results suggest that the vasorelaxant effects of hesperetin are basically due to the inhibition of PDE1 and PDE4 activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CaM:

Calmodulin

DMSO:

Dimethyl sulfoxide

GB:

Glibenclamide

IBMX:

3-Isobutyl-1-methylxanthine

MLC:

Myosin light chain

NA:

Noradrenaline

NBT:

Nitro blue tetrazolium

O2•−:

Superoxide radical

OA:

Okadaic acid

PDE(s):

Cyclic nucleotide phosphodiesterase(s)

PMS/NADH system:

Phenazine methosulfate/reduced β-nicotinamide adenine dinucleotide system

SOD:

Superoxide dismutase

TEA:

Tetraethylammonium

References

  • Álvarez E, Orallo F (2001) Preliminary study of the potential vasodilator effects on rat aorta of hesperidin and hesperetin, two flavonoids from citrus fruit [abstract 9P076]. Fundam Clin Pharmacol 15:125

    Article  PubMed  Google Scholar 

  • Álvarez E, Leiro J, Orallo F (2002) Effect of (−)-epigallocatechin 3-gallate on respiratory burst of rat macrophages. Int Immunopharmacol 2:849–855

    Article  PubMed  Google Scholar 

  • Beretz A, Anton R, Stoclet JC (1978) Flavonoid compounds are potent inhibitors of cyclic AMP phosphodiesterase. Experientia 34:1054–1055

    CAS  PubMed  Google Scholar 

  • Calderone V, Chericoni S, Martinelli C, Testai L, Nardi A, Morelli I, Breschi MC, Martinotti E (2004) Vasorelaxing effects of flavonoids: investigation on the possible involvement of potassium channels. Naunyn-Schmiedebergs Arch Pharmacol (online publication at http://dx.doi.org/10.1007/s00210-004-0964-z)

  • Eckly-Michel AE, Martin V, Lugnier C (1997) Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation. Br J Pharmacol 122:158–164

    CAS  PubMed  Google Scholar 

  • Edwards G, Weston AH (1995) Pharmacology of the potassium channel openers. Cardiovasc Drugs Ther 9:185–193

    PubMed  Google Scholar 

  • Emam AM, Elias R, Moussa AM, Faure R, Debrauwer L, Balansard G (1998) Two flavonoid triglycosides from Buddleja madagascariensis. Phytochemistry 48:739–742

    Article  CAS  PubMed  Google Scholar 

  • Feng MG, Feng GH, Zhou QG (1998) Effects of methylhesperidin on coronary, renal and cerebral circulation in dogs. Chung Kuo Yao Li Hsueh Pao 9:548–550

    Google Scholar 

  • Galati EM, Trovato A, Kirjavainen S, Forestieri AM, Rossitto A, Monforte MT (1996) Biological effects of hesperidin, a Citrus flavonoid (Note III): antihypertensive and diuretic activity in rat. Farmaco 51:219–221

    CAS  PubMed  Google Scholar 

  • Garg A, Garg S, Zaneveld LJ, Singla AK (2001) Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother Res 15:655–669

    Article  CAS  PubMed  Google Scholar 

  • Ibarra M, Perez-Vizcaíno F, Cogolludo A, Duarte J, Zaragoza-Arnáez F, López-López JG, Tamargo J (2002) Cardiovascular effects of isorhamnetin and quercetin in isolated rat and porcine vascular smooth muscle and isolated rat atria. Planta Med 68:307–310

    Article  CAS  PubMed  Google Scholar 

  • Kameni Tcheudji JF, Lebeau L, Virmaux N, Maftei CG, Cote RH, Lugnier C, Schultz P (2001) Molecular organisation of bovine rod cGMP-phosphodiesterase 6. J Mol Biol 310:781–791

    Article  CAS  PubMed  Google Scholar 

  • Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano KI, Harada KI, Miyamoto S, Nakazawa H, Won KJ, Sato K (1997) Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev 49:157–230

    CAS  PubMed  Google Scholar 

  • Keravis TM, Wells JN, Hardman JG (1980) Cyclic nucleotide phosphodiesterase activities from pig coronary arteries. Lack of interconvertibility of major forms. Biochim Biophys Acta 613:116–129

    CAS  PubMed  Google Scholar 

  • Knapp J, Boknik P, Linck B, Luss H, Muller FU, Petertonjes L, Schmitz W, Neumann J (2000) Cantharidin enhances norepinephrine-induced vasoconstriction in an endothelium-dependent fashion. J Pharmacol Exp Ther 294:620–626

    CAS  PubMed  Google Scholar 

  • Komas N, Lugnier C, Stoclet JC (1991) Endothelium-dependent and independent relaxation of the rat aorta by cyclic nucleotide phosphodiesterase inhibitors. Br J Pharmacol 104:495–503

    CAS  PubMed  Google Scholar 

  • Liu H, Xiong Z, Sperelakis N (1997) Cyclic nucleotides regulate the activity of l-type calcium channels in smooth muscle cells from rat portal vein. J Mol Cell Cardiol 29:1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Lorenz JN, Bielefeld DR, Sperelakis N (1994) Regulation of calcium channel current in A7r5 vascular smooth muscle cells by cyclic nucleotides. Am J Physiol 266:C1656–C1663

    CAS  PubMed  Google Scholar 

  • Lugnier C, Komas N (1993) Modulation of vascular cyclic nucleotide phosphodiesterases by cyclic GMP: role in vasodilatation. Eur Heart J 14:141–148

    CAS  Google Scholar 

  • Lugnier C, Schini V (1990) Characterization of cyclic nucleotide phosphodiesterases in bovine aortic endothelial cells in culture. Biochem Pharmacol 39:75–84

    Article  CAS  PubMed  Google Scholar 

  • Lugnier C, Schoeffter P, Le Bec A, Strouthou E, Stoclet JC (1986) Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta. Biochem Pharmacol 35:1743–1751

    Article  CAS  PubMed  Google Scholar 

  • Maurice DH, Palmer D, Tilley DG, Dunkerley HA, Netherton SJ, Raymond DR, Elbatarny HS, Jimmo SL (2003) Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol 64:533–546

    Article  CAS  PubMed  Google Scholar 

  • Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, cancer. Pharmacol Rev 52:673–751

    CAS  PubMed  Google Scholar 

  • Nichols MR, Morimoto BH (2000) Differential inhibition of multiple cAMP phosphodiesterase isozymes by isoflavones and tyrphostins. Mol Pharmacol 57:738–745

    CAS  PubMed  Google Scholar 

  • Noguera MA, Ivorra MM, Lugnier C, D’Ocon P (2001) Role of cyclic nucleotide phosphodiesterase isoenzymes in contractile responses of denuded rat aorta related to various Ca2+ sources. Naunyn-Schmiedebergs Arch Pharmacol 363:612–619

    Article  CAS  PubMed  Google Scholar 

  • Okamura N, Haraguchi H, Hashimoto K, Yagi A (1994) Flavonoids in Rosmarinus officinalis leaves. Phytochemistry 37:1463–1466

    Article  CAS  PubMed  Google Scholar 

  • Orallo F (1996) Regulation of cytosolic calcium levels in vascular smooth muscle. Pharmacol Ther 69:153–171

    Article  CAS  PubMed  Google Scholar 

  • Orallo F (1997) Study of the in vivo and in vitro cardiovascular effects of a hydralazine-like vasodilator agent (HPS-10) in normotensive rats. Br J Pharmacol 121:1627–1636

    CAS  PubMed  Google Scholar 

  • Orallo F, Álvarez E, Camiña M, Leiro JM, Gómez E, Fernández P (2002) The possible implication of trans-resveratrol in the cardioprotective effects of long-term moderate wine consumption. Mol Pharmacol 61:294–302

    Article  CAS  PubMed  Google Scholar 

  • Quast U (1993) Do the K+ channel openers relax smooth muscle by opening K+ channels? Trends Pharmacol Sci 14:332–337

    Article  CAS  PubMed  Google Scholar 

  • Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA (2003) Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res 93:280–291

    Article  CAS  PubMed  Google Scholar 

  • Sakata K, Hirose Y, Qiao Z, Tanaka T, Mori H (2003) Inhibition of inducible isoforms of cyclooxygenase and nitric oxide synthase by flavonoid hesperidin in mouse macrophage cell line. Cancer Lett 199:139–145

    Article  CAS  PubMed  Google Scholar 

  • Schoeffter P, Lugnier C, Demesy-Waeldele F, Stoclet JC (1987) Role of cyclic AMP- and cyclic-GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta: a study with selective inhibitors. Biochem Pharmacol 36:3965–3972

    Article  CAS  PubMed  Google Scholar 

  • Spencer JP, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C (1999) The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett 458:224–230

    Article  CAS  PubMed  Google Scholar 

  • Stoclet JC, Keravis T, Komas N, Lugnier C (1995) Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiovascular diseases. Expert Opin Investig Drugs 4:1081–1100

    CAS  Google Scholar 

  • Van der Zypp A, Rechtman M, Majewski H (2000) The role of cyclic nucleotides and calcium in the relaxation produced by amrinone in rat aorta. Gen Pharmacol 34:245–253

    Article  PubMed  Google Scholar 

  • Vidrio H, Fernández G, Medina M, Álvarez E, Orallo F (2003) Effects of hydrazine derivatives on vascular smooth muscle contractility, blood pressure and cGMP production in rats: comparison with hydralazine. Vasc Pharmacol 40:13–21

    Article  CAS  Google Scholar 

  • Wakabayashi I, Sakamoto K, Hatake K (1995) Inhibitory effects of cadmium ion on extracellular Ca2+-independent contraction of rat aorta. Eur J Pharmacol 293:133–140

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Comisión Interministerial de Ciencia y Tecnología (CICYT), Spain (SAF2000-0137 and SAF2002-0245), the Consellería de Educación e Ordenación Universitaria, Xunta de Galicia, Spain (PGIDIT02BTF20301PR and PGIDIT02PXIC20305PN), and the Centre National de la Recherche Scientifique, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Orallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orallo, F., Álvarez, E., Basaran, H. et al. Comparative study of the vasorelaxant activity, superoxide-scavenging ability and cyclic nucleotide phosphodiesterase-inhibitory effects of hesperetin and hesperidin. Naunyn-Schmiedeberg's Arch Pharmacol 370, 452–463 (2004). https://doi.org/10.1007/s00210-004-0994-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0994-6

Keywords

Navigation