Skip to main content
Log in

Hard-metal (WC–Co) particles trigger a signaling cascade involving p38 MAPK, HIF-1α, HMOX1, and p53 activation in human PBMC

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Hard-metals are made of tungsten carbide (WC) and metallic cobalt (Co) particles and are important industrial materials produced for their extreme hardness and high wear resistance properties. While occupational exposure to metallic Co alone is apparently not associated with an increased risk of cancer, the WC–Co particle mixture was shown to increase the risk of lung cancer in exposed workers. We have previously shown that WC–Co specifically induces a burst of reactive oxygen species (ROS) and in vitro mutagenic/apoptogenic effects in human peripheral blood mononucleated cells (PBMC) used as a validated experimental model. In the present study, PBMCs were treated during a short period (15 min) to focus on the very rapid ROS burst induced by WC–Co. We investigated by microarray the response to WC–Co versus Co2+ ions (CoCl2) after 15 min exposure and found that the oxidative stress response HMOX1 gene was highly expressed in WC–Co-treated samples. This result was confirmed by qRT-PCR, and western blotting was carried out to analyze translational and post-translational regulation of genes belonging to the HMOX1 pathway. We show here that WC–Co, and metallic Co particles although with slower kinetics, but not CoCl2 or WC alone, induced a temporally ordered cascade of events. This cascade implies p38/MAP kinase activation, HIF-1α stabilization, HMOX1 transcriptional activation, and ATM-independent p53 stabilization. These events, and in particular HIF-1α stabilization, could contribute to the carcinogenic activity of WC–Co dusts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anard D, Kirsch Volders M, Elhajouji A, Belpaeme K, Lison D (1997) In vitro genotoxic effects of hard metal particles assessed by alkaline single cell gel and elution assays. Carcinogenesis 18:177–184

    Article  PubMed  CAS  Google Scholar 

  • Brune B, Zhou J, von Knethen A (2003) Nitric oxide, oxidative stress, and apoptosis. Kidney Int Suppl 84:S22–S24

    Google Scholar 

  • Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace AJ Jr (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854

    Article  PubMed  CAS  Google Scholar 

  • Chandel NS, Vander Heiden MG, Thompson CB, Schumacker PT (2000) Redox regulation of p53 during hypoxia. Oncogene 19:3840–3848

    Article  PubMed  CAS  Google Scholar 

  • Chiacchiera F, Matrone A, Ferrari E, Ingravallo G, Lo Sasso G, Murzilli S, Petruzzelli M, Salvatore L, Moschetta A, Simone C (2009) p38alpha blockade inhibits colorectal cancer growth in vivo by inducing a switch from HIF1alpha- to FoxO-dependent transcription. Cell Death Differ 16:1203–1214

    Article  PubMed  CAS  Google Scholar 

  • De Boeck M, Lison D, Kirsch Volders M (1998) Evaluation of the in vitro direct and indirect genotoxic effects of cobalt compounds using the alkaline comet assay. Influence of interdonor and interexperimental variability. Carcinogenesis 19:2021–2029

    Article  PubMed  Google Scholar 

  • De Boeck M, Kirsch-Volders M, Lison D (2003) Cobalt and antimony: genotoxicity and carcinogenicity. Mutat Res 533:135–152

    Article  PubMed  Google Scholar 

  • Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR (2007) p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11:191–205

    Article  PubMed  CAS  Google Scholar 

  • Dumaz N, Meek DW (1999) Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J 18:7002–7010

    Article  PubMed  CAS  Google Scholar 

  • Emerling BM, Platanias LC, Black E, Nebreda AR, Davis RJ, Chandel NS (2005) Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling. Mol Cell Biol 25:4853–4862

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Hollstein M, Xu Y (2006) Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle 5:2812–2819

    Article  PubMed  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  PubMed  CAS  Google Scholar 

  • IARC (2006) IARC monographs on the evaluation of carcinogenic risks to humans, vol 86, Cobalt in hard-metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide, Lyon

  • Kim HJ, Yang SJ, Kim YS, Kim TU (2003) Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase activation in human cervical cancer HeLa cells. J Biochem Mol Biol 36:468–474

    Article  PubMed  CAS  Google Scholar 

  • Kuwano K (2008) Involvement of epithelial cell apoptosis in interstitial lung diseases. Intern Med (Tokyo, Japan) 47:345–353

    Google Scholar 

  • Lee JH, Kim HS, Lee SJ, Kim KT (2007) Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death. J Cell Sci 120:2259–2271

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Jo HJ, Kim KM, Song JD, Chung HT, Park YC (2008) Concurrent expression of heme oxygenase-1 and p53 in human retinal pigment epithelial cell line. Biochem Biophys Res Commun 365:870–874

    Article  PubMed  CAS  Google Scholar 

  • Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Radical Biol Med 37:1921–1942

    Article  CAS  Google Scholar 

  • Li X, Shu R, Filippatos G, Uhal BD (2004) Apoptosis in lung injury and remodeling. J Appl Physiol 97:1535–1542

    Article  PubMed  CAS  Google Scholar 

  • Li X, Dumont P, Della Pietra A, Shetler C, Murphy ME (2005) The codon 47 polymorphism in p53 is functionally significant. J Biol Chem 280:24245–24251

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Ya K, Xiao-Mei W, Lei Y, Yang L, Ming QZ (2008) Ginkgolides protect PC12 cells against hypoxia-induced injury by p42/p44 MAPK pathway-dependent upregulation of HIF-1alpha expression and HIF-1DNA-binding activity. J Cell Biochem 103:564–575

    Article  PubMed  CAS  Google Scholar 

  • Lison D (1996) Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease). Crit Rev Toxicol 26:585–616

    Article  PubMed  CAS  Google Scholar 

  • Lison D, Carbonnelle P, Mollo L, Lauwerys R, Fubini B (1995) Physicochemical mechanism of the interaction between cobalt metal and carbide particles to generate toxic activated oxygen species. Chem Res Toxicol 8:600–606

    Article  PubMed  CAS  Google Scholar 

  • Lison D, De Boeck M, Verougstraete V, Kirsch-Volders M (2001) Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup Environ Med 58:619–625

    Article  PubMed  CAS  Google Scholar 

  • Lombaert N, De Boeck M, Decordier I, Cundari E, Lison D, Kirsch-Volders M (2004) Evaluation of the apoptogenic potential of hard metal dust (WC- Co), tungsten carbide and metallic cobalt. Toxicol Lett 154:23–34

    Article  PubMed  CAS  Google Scholar 

  • Lombaert N, Lison D, Van Hummelen P, Kirsch-Volders M (2008) In vitro expression of hard metal dust (WC–Co)-responsive genes in human peripheral blood mononucleated cells. Toxicol Appl Pharmacol 227:299–312

    Article  PubMed  CAS  Google Scholar 

  • Maxwell P, Salnikow K (2004) HIF-1: an oxygen and metal responsive transcription factor. Cancer Biol Ther 3:29–35

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418

    Article  PubMed  CAS  Google Scholar 

  • Moulin JJ, Wild P, Mur JM, Fournier-Betz M, Mercier-Gallay M (1993) A mortality study of cobalt production workers: an extension of the follow-up. Am J Ind Med 23:281–288

    Article  PubMed  CAS  Google Scholar 

  • Moulin JJ, Wild P, Romazini S, Lasfargues G, Peltier A, Bozec C, Deguerry P, Pellet F, Perdrix A (1998) Lung cancer risk in hard-metal workers. Am J Epidemiol 148:241–248

    Article  PubMed  CAS  Google Scholar 

  • Otterbein LE, Choi AM (2000) Heme oxygenase: colors of defense against cellular stress. Am J Physiol 279:L1029–L1037

    CAS  Google Scholar 

  • Otterbein LE, Soares MP, Yamashita K, Bach FH (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 24:449–455

    Article  PubMed  CAS  Google Scholar 

  • Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F, Soddu S (2007) MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 25:739–750

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E (1998) DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev 12:2831–2841

    Article  PubMed  CAS  Google Scholar 

  • Salnikow K, Donald SP, Bruick RK, Zhitkovich A, Phang JM, Kasprzak KS (2004) Depletion of intracellular ascorbate by the carcinogenic metals nickel and cobalt results in the induction of hypoxic stress. J Biol Chem 279:40337–40344

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14:1983–1991

    PubMed  CAS  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2006) Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets 10:267–280

    Article  PubMed  CAS  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    Article  PubMed  CAS  Google Scholar 

  • Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev 3:155–168

    Article  CAS  Google Scholar 

  • Triantafyllou A, Liakos P, Tsakalof A, Georgatsou E, Simos G, Bonanou S (2006) Cobalt induces hypoxia-inducible factor-1alpha (HIF-1alpha) in HeLa cells by an iron-independent, but ROS-, PI-3K- and MAPK-dependent mechanism. Free Radical Res 40:847–856

    Article  CAS  Google Scholar 

  • Uhal BD (2003) Epithelial apoptosis in the initiation of lung fibrosis. Eur Respir J 44:7s–9s

    Article  CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Inter 160:1–40

    Article  CAS  Google Scholar 

  • Van Goethem F, Lison D, Kirsch-Volders M (1997) Comparative evaluation of the in vitro micronucleus test and the alkaline single cell gel electrophoresis assay for the detection of DNA damaging agents: genotoxic effects of cobalt powder, tungsten carbide and cobalt–tungsten carbide. Mut Res 392:31–43

    Article  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  • Ziello JE, Jovin IS, Huang Y (2007) Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med 80:51–60

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Lison.

Additional information

Noömi Lombaert and Eleonora Castrucci contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lombaert, N., Castrucci, E., Decordier, I. et al. Hard-metal (WC–Co) particles trigger a signaling cascade involving p38 MAPK, HIF-1α, HMOX1, and p53 activation in human PBMC. Arch Toxicol 87, 259–268 (2013). https://doi.org/10.1007/s00204-012-0943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0943-y

Keywords

Navigation