Skip to main content
Log in

Interference of engineered nanoparticles with in vitro toxicity assays

  • Inorganic compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Accurate in vitro assessment of nanoparticle cytotoxicity requires a careful selection of the test systems. Due to high adsorption capacity and optical activity, engineered nanoparticles are highly potential in influencing classical cytotoxicity assays. Here, four common in vitro assays for oxidative stress, cell viability, cell death and inflammatory cytokine production (DCF, MTT, LDH and IL-8 ELISA) were assessed for validity using 24 well-characterized engineered nanoparticles. For all nanoparticles, the possible interference with the optical detection methods, the ability to convert the substrates, the influence on enzymatic activity and the potential to bind proinflammatory cytokines were analyzed in detail. Results varied considerably depending on the assay system used. All nanoparticles tested were found to interfere with the optical measurement at concentrations of 50 μg cm−2 and above when DCF, MTT and LDH assays were performed. Except for Carbon Black, particle interference could be prevented by altering assay protocols and lowering particle concentrations to 10 μg cm−2. Carbon Black was also found to oxidize H2DCF-DA in a cell-free system, whereas only ZnO nanoparticles significantly decreased LDH activity. A dramatic loss of immunoreactive IL-8 was observed for only one of the three TiO2 particle types tested. Our results demonstrate that engineered nanoparticles interfere with classic cytotoxicity assays in a highly concentration-, particle- and assay-specific manner. These findings strongly suggest that each in vitro test system has to be evaluated for each single nanoparticle type to accurately assess the nanoparticle toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

H2DCF-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

DCF:

2′,7′-Dichlorofluorescein

MTT:

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide)

INT:

(2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride)

MTS:

3-(4,5-Dimethylthiazole-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazoliumin

References

  • Belyanskaya L, Manser P, Spohn P, Bruinink A, Wick P (2007) The reliability and limits of the MTT reduction assay for carbon nanotubes-cell interaction. Carbon 45:2643–2648

    Article  CAS  Google Scholar 

  • Brown DM, Dickson C, Duncan P, Al-Attili F, Stone V (2010) Interaction between nanoparticles and cytokine proteins: impact on protein and particle functionality. Nanotechnology 21:215104

    Article  PubMed  Google Scholar 

  • Carlsson H, Prachayasittikul V, Bulow L (1993) Zinc ions bound to chimeric His4/lactate dehydrogenase facilitate decarboxylation of oxaloacetate. Protein Eng 6:907–911

    Article  PubMed  CAS  Google Scholar 

  • Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G (2007) Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 45:1425–1432

    Article  CAS  Google Scholar 

  • Casey A, Herzog E, Lyng FM, Byrne HJ, Chambers G, Davoren M (2008) Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol Lett 179:78–84

    Article  PubMed  CAS  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Nat Acad Sci USA 104:2050–2055

    Article  PubMed  CAS  Google Scholar 

  • Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23:1974–1980

    Article  PubMed  CAS  Google Scholar 

  • Doak SH, Griffiths SM, Manshian B, Singh N, Williams PM, Brown AP, Jenkins GJ (2009) Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24:285–293

    Article  PubMed  CAS  Google Scholar 

  • Duffin R, Tran L, Brown D, Stone V, Donaldson K (2007) Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhalation Toxicol 19:849–856

    Article  CAS  Google Scholar 

  • Esch RK, Han L, Foarde KK, Ensor DS (2010) Endotoxin contamination of engineered nanomaterials. Nanotoxicology 4:73–83

    Article  PubMed  CAS  Google Scholar 

  • Fisichella M, Dabboue H, Bhattacharyya S, Saboungi ML, Salvetat JP, Hevor T, Guerin M (2009) Mesoporous silica nanoparticles enhance MTT formazan exocytosis in HeLa cells and astrocytes. Toxicol In Vitro 23:697–703

    Article  PubMed  CAS  Google Scholar 

  • Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115:397–402

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Von Dem Bussche A, Buechner M, Yan A, Kane AB, Hurt RH (2008) Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small (Weinheim an der Bergstrasse, Germany) 4:721–727

  • Jakubowski W, Bartosz G (2000) 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 24:757–760

    Article  PubMed  CAS  Google Scholar 

  • Johnston HJ, Hutchison GR, Christensen FM, Aschberger K, Stone V (2009) The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci 114:162–182

    Article  PubMed  Google Scholar 

  • Kim H, Liu X, Kobayashi T, Kohyama T, Wen FQ, Romberger DJ, Conner H, Gilmour PS, Donaldson K, MacNee W, Rennard SI (2003) Ultrafine carbon black particles inhibit human lung fibroblast-mediated collagen gel contraction. Am J Respir Cell Mol Biol 28:111–121

    Article  PubMed  CAS  Google Scholar 

  • Kocbach A, Totlandsdal AI, Lag M, Refsnes M, Schwarze PE (2008) Differential binding of cytokines to environmentally relevant particles: a possible source for misinterpretation of in vitro results? Toxicol Lett 176:131–137

    Article  PubMed  CAS  Google Scholar 

  • Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313–320

    Article  PubMed  CAS  Google Scholar 

  • Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72:370–377

    Article  PubMed  CAS  Google Scholar 

  • Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, Gobbert C, Voetz M, Hardinghaus F, Schnekenburger J (2011) Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8:9

    Article  PubMed  CAS  Google Scholar 

  • Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W (2010) Testing metal-oxide nanomaterials for human safety. Adv Mater 22:2601–2627

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Nat Acad Sci USA 105:14265–14270

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Hafeli UO, Stroeve P (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf 75:300–309

    Article  CAS  Google Scholar 

  • Monteiro-Riviere NA, Inman AO (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44:1070–1078

    Article  CAS  Google Scholar 

  • Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234:222–235

    Article  PubMed  CAS  Google Scholar 

  • Nachlas MM, Margulies SI, Goldberg JD, Seligman AM (1960) The determination of lactic dehydrogenase with a tetrazolium salt. Anal Biochem 1:317–326

    Article  PubMed  CAS  Google Scholar 

  • NanoCare Project (2009) NanoCare: health related aspects of nanomaterials. Final Scientific Report, Dechema e.V., Frankfurt a.M

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Lee W, Slutsky L, Clark RA, Pernodet N, Rafailovich MH (2009) Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5:511–520

    Google Scholar 

  • Pfaller T, Colognato R, Nelissen I, Favilli F, Casals E, Ooms D, Leppens H, Ponti J, Stritzinger R, Puntes V, Boraschi D, Duschl A, Oostingh GJ (2010) The suitability of different cellular in vitro immunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events. Nanotoxicology 4:52–72

    Article  PubMed  CAS  Google Scholar 

  • Rabolli V, Thomassen LC, Princen C, Napierska D, Gonzalez L, Kirsch-Volders M, Hoet PH, Huaux F, Kirschhock CE, Martens JA, Lison D (2010) Influence of size, surface area and microporosity on the in vitro cytotoxic activity of amorphous silica nanoparticles in different cell types. Nanotoxicology 4:307–318

    Article  PubMed  CAS  Google Scholar 

  • Rothen-Rutishauser B, Brown DM, Piallier-Boyles M, Kinloch IA, Windle AH, Gehr P, Stone V (2010) Relating the physicochemical characteristics and dispersion of multiwalled carbon nanotubes in different suspension media to their oxidative reactivity in vitro and inflammation in vivo. Nanotoxicology 4:331–342

    Article  PubMed  CAS  Google Scholar 

  • Sabatini CA, Pereira RV, Gehlen MH (2007) Fluorescence modulation of acridine and coumarin dyes by silver nanoparticles. Journal of fluorescence 17:377–382

    Article  PubMed  CAS  Google Scholar 

  • Sadik OA, Zhou AL, Kikandi S, Du N, Wang Q, Varner K (2009) Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. J Environ Monit 11:1782–1800

    Article  PubMed  CAS  Google Scholar 

  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185

    Article  PubMed  CAS  Google Scholar 

  • Schulze C, Kroll A, Lehr CM, Schäfer UF, Becker K, Schnekenburger J, Schulze Isfort C, Landsiedel R, Wohleben W (2008) Not ready to use—overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2:51–61

    Article  CAS  Google Scholar 

  • Seagrave J, Knall C, McDonald JD, Mauderly JL (2004) Diesel particulate material binds and concentrates a proinflammatory cytokine that causes neutrophil migration. Inhalation Toxicol 16(Suppl 1):93–98

    Article  CAS  Google Scholar 

  • Shaw SY, Westly EC, Pittet MJ, Subramanian A, Schreiber SL, Weissleder R (2008) Perturbational profiling of nanomaterial biologic activity. Proc Nat Acad Sci USA 105:7387–7392

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Nalwa HS (2007) Nanotechnology and health safety–toxicity and risk assessments of nanostructured materials on human health. J Nanosci Nanotechnol 7:3048–3070

    Article  PubMed  CAS  Google Scholar 

  • Stearns RC, Paulauskis JD, Godleski JJ (2001) Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 24:108–115

    PubMed  CAS  Google Scholar 

  • Val S, Hussain S, Boland S, Hamel R, Baeza-Squiban A, Marano F (2009) Carbon black and titanium dioxide nanoparticles induce pro-inflammatory responses in bronchial epithelial cells: need for multiparametric evaluation due to adsorption artifacts. Inhalation Toxicol 21(Suppl 1):115–122

    Article  CAS  Google Scholar 

  • Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS (2007) Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Particle and fibre toxicology 4:2

    Article  PubMed  Google Scholar 

  • Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, Li Y, Li B, Ge C, Zhou G, Gao Y, Zhao Y, Chai Z (2008) Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183:72–80

    Article  PubMed  CAS  Google Scholar 

  • Wells AJ, Smith WR (1941) The absorption spectrum of suspensions of carbon black. J Phys Chem 45:1055–1060

    Article  CAS  Google Scholar 

  • Wolf R, Wolf D, Morganti P, Ruocco V (2001) Sunscreens. Clin Dermatol 19:452–459

    Article  PubMed  CAS  Google Scholar 

  • Worle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Ahn JS, Lim JI, Lee YK (2009) Influence of TiO2 nanoparticles on the optical properties of resin composites. Dent Mater 25:1142–1147

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the German Federal Ministry of Education and Research (BMBF projects NanoCare and Cell@Nano) and the state NRW (NanoPaCT). We thank Birgit Phillip for excellent technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schnekenburger.

Additional information

This article is published as a part of the Special Issue “Nanotoxicology II” on the ECETOC Satellite workshop, Dresden 2010 (Innovation through Nanotechnology and Nanomaterials + Current Aspects of Safety Assessment and Regulation).

Alexandra Kroll and Mike Hendrik Pillukat contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroll, A., Pillukat, M.H., Hahn, D. et al. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 86, 1123–1136 (2012). https://doi.org/10.1007/s00204-012-0837-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0837-z

Keywords

Navigation