Skip to main content

Advertisement

Log in

Antioxidant activity of food constituents: an overview

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Recently, there has been growing interest in research into the role of plant-derived antioxidants in food and human health. The beneficial influence of many foodstuffs and beverages including fruits, vegetables, tea, coffee, and cacao on human health has been recently recognized to originate from their antioxidant activity. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food constituents are reviewed and presented. Also, the general chemistry underlying the assays in the present paper was clarified. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceutical, and dietary supplement industries. In addition, the most important advantages and shortcomings of each method were detected and highlighted. The chemical principles of these methods are outlined and critically discussed. The chemical principles of methods of 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging, Fe3+–Fe2+ transformation assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), peroxyl radical scavenging, superoxide anion radical (O ·−2 ) scavenging, hydrogen peroxide (H2O2) scavenging, hydroxyl radical (OH·) scavenging, singlet oxygen (1O2) quenching assay and nitric oxide radical (NO·) scavenging assay are outlined and critically discussed. Also, the general antioxidant aspects of main food components were discussed by a number of methods which are currently used for detection of antioxidant properties food components. This review consists of two main sections. The first section is devoted to main components in the foodstuffs and beverages. The second general section is some definitions of the main antioxidant methods commonly used for determination of antioxidant activity of components in the foodstuffs and beverages. In addition, there are given some chemical and kinetic basis and technical details of the used methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Abraham MH, Grellier PL, Prior DV, Morris JJ, Taylor PJ (1990) Hydrogen bonding. Part 10. A scale of solute hydrogen-bond basicity using log K values for complexation in tetrachloromethane. J Chem Soc Perkin Trans 2:521–529

    Google Scholar 

  • Ak T, Gülçin İ (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37

    Article  PubMed  CAS  Google Scholar 

  • Alcolea JF, Cano A, Acosta M, Arnao MB (2002) Hydrophilic and lipophilic antioxidant activities of grapes. Nahrung 46:353–356

    Article  PubMed  CAS  Google Scholar 

  • Alho H, Leinonen J (1999) Total antioxidant activity measured by chemiluminescence methods. Method Enzymol 299:3–15

    Article  CAS  Google Scholar 

  • Alho H, Leinonen JS, Erhola M, Lonnrot K, Aejmelaeus R (1998) Assay of antioxidant capacity of human plasma and CSF in aging and disease. Restor Neurol Neurosci 12:159–165

    PubMed  CAS  Google Scholar 

  • Alonso AM, Dominguez C, Guillen DA, Barroso CG (2002) Determination of antioxidant power of red and white wines by a new electrochemical method and its correlation with polyphenolic content. J Agric Food Chem 50:3112–3115

    Article  PubMed  CAS  Google Scholar 

  • Amarowicz R, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil JA (2004) Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 84:551–562

    Article  CAS  Google Scholar 

  • Ames B (1996) Dietary carcinogens and anticarcinogenes. Grasas y Aceites 47:186–196

    Article  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  PubMed  CAS  Google Scholar 

  • Andjelkovic M, Camp JV, Meulenaer BD, Depaemelaere G, Socaciu C, Verloo M, Verhe R (2006) Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem 98:23–31

    Article  CAS  Google Scholar 

  • Apak R, Güçlü K, Özyürek M, Karademir SE, Altun M (2005) Total antioxidant capacity assay of human serum using copper(II)- neocuproine as chromogenic oxidant: the CUPRAC method. Free Radic Res 39:949–961

    Article  PubMed  CAS  Google Scholar 

  • Apak R, Güçlü K, Özyürek M, Karademir SE, Erçag E (2006) The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int J Food Sci Nut 57:292–304

    Article  CAS  Google Scholar 

  • Apak R, Güçlü K, Özyürek M, Çelik SE (2008) Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 160:413–419

    Article  CAS  Google Scholar 

  • ArasHisar Ş, Hisar O, Beydemir Ş, Gülçin İ, Yanık T (2004) Effect of vitamin E on carbonic anhydrase enzyme activity in rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. Acta Vet Hung 52:413–422

    Article  CAS  Google Scholar 

  • Arnao MB (2000) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol 11:419–421

    Article  CAS  Google Scholar 

  • Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599

    Article  PubMed  CAS  Google Scholar 

  • Aruoma OI (1994) Nutrition and health aspects of free radicals and antioxidants. Food Chem Toxicol 62:671–683

    Google Scholar 

  • Aruoma OI, Murcia A, Butler J, Halliwell B (1993) Evaluation of the antioxidant and proantioxidant actions of gallic acid and its derivatives. J Agric Food Chem 41:1880–1885

    Article  CAS  Google Scholar 

  • Asanuma M, Nishibayashi-Asanuma S, Miyazaki I, Kohno M, Ogawa N (2001) Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem 76:1895–1904

    Article  PubMed  CAS  Google Scholar 

  • Atsumi T, Iwakura I, Fujisawa S, Ueha T (2001) Reactive oxygen species generation and photo-cytotoxicity of eugenol in solutions of various pH. Biomaterials 22:1459–1466

    Article  PubMed  CAS  Google Scholar 

  • Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L (2003) Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51:6657–6662

    Article  PubMed  CAS  Google Scholar 

  • Balaydın HT, Gülçin İ, Menzek A, Göksu S, Şahin E (2010) Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. J Enzyme Inhib Med Chem 25:685–695

    Article  PubMed  CAS  Google Scholar 

  • Barclay LRC, Vinqvist MR, Mukai K, Itoh S, Morimoto H (1993) Chainbreaking phenolic antioxidants: steric and electronic effects in polyalkylchromanols, tocopherol analogs, hydroquinons, and superior antioxidants of polyalkylbenzochromanol and naphthofuran class. J Org Chem 58:7416–7420

    Article  CAS  Google Scholar 

  • Bartosz G, Janaszewska A, Ertel D, Bartosz M (1998) Simple determination of peroxyl radical-trapping capacity. Biochem Mol Biol Int 46:519–528

    PubMed  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844

    Article  PubMed  CAS  Google Scholar 

  • Beecher GR (1999) In antioxidant food supplements in human health. In: Packer L, Hiramatsu M, Yoshikawa T (eds) Academic Press, New York

  • Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DDM (1986) The antioxidant role of vitamin C. Free Radical Bio Med 2:419–444

    Article  CAS  Google Scholar 

  • Benzie IFF (1996) An automated, specific, spectrophotometric method for measuring ascorbic acid in plasma (EFTSA). Clin Biochem 111–116

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  • Benzie IFF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method Enzymol 299:15–27

    Article  CAS  Google Scholar 

  • Benzie IFF, Szeto YT (1999) Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem 47:633–636

    Article  PubMed  CAS  Google Scholar 

  • Berg D, Gerlach M, Youdim MBH, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236

    Article  PubMed  CAS  Google Scholar 

  • Berges A, Van Nassauw L, Timmermans JP, Vrints C (2007) Time-dependent expression pattern of nitric oxide and superoxide after myocardial infarction in rats. Pharmacol Res 55:72–79

    Article  PubMed  CAS  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 26:1199–1200

    Article  Google Scholar 

  • Bocco A, Cuvelier ME, Richard H, Berset C (1998) Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem 46:2123–2129

    Article  CAS  Google Scholar 

  • Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. Lebensm Wissen Technol 30:609–615

    CAS  Google Scholar 

  • Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355

    Article  PubMed  CAS  Google Scholar 

  • Bors W, Heller W, Michael C, Stettmaier K (1996) Flavonoids and polyphenols: chemistry and biology. In: Cadenas E, Packer L (eds) Handbook of antioxidants. Marcel Dekker, New York, pp 409–466

    Google Scholar 

  • Bortolomeazzi R, Verardo G, Liessi A, Calle A (2010) Formation of dehydrodiisoeugenol and dehydrodieugenol from the reaction of isoeugenol and eugenol with DPPH radical and their role in the radical scavenging activity. Food Chem 118:256–265

    Article  CAS  Google Scholar 

  • Box JD (1983) Investigation of the Folin-Ciocalteu phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wissen Technol 28:25–30

    CAS  Google Scholar 

  • Bray HG, Thorpe WV (1954) Analysis of components of interest in metabolism. Meth Biochem Anal 1:27–52

    Article  CAS  Google Scholar 

  • Brigelius-Flohé R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1155

    PubMed  Google Scholar 

  • Budowski P, Menezes FGT, Dollear FG (1950) Sesame oil V. The stability of sesame oil. J Am Oil Chem Soc 27:377–380

    Article  CAS  Google Scholar 

  • Bull C, McClune GJ, Free JA (1983) The mechanism of Fe-EDTA catalyzed superoxide dismutation. J Am Chem Soc 105:5290–5300

    Article  CAS  Google Scholar 

  • Bursal E, Gülçin İ (2011) Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Res Int 44:1482–1489

    Article  CAS  Google Scholar 

  • Burton GW, Ingold KU (1981) Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J Am Chem Soc 103:6472–6477

    Article  CAS  Google Scholar 

  • Büyükokuroğlu ME, Gülçin İ (2009) In vitro antioxidant and antiradical properties of Hippophae rhamnoides L. Phcog Mag 4:189–195

    Google Scholar 

  • Büyükokuroğlu ME, Gülçin İ, Oktay M, Kufrevioglu Öİ (2001) In vitro antioxidant properties of dantrolene sodium. Pharmacol Res 44:491–495

    Article  PubMed  CAS  Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Ann Rev Biochem 58:79–110

    Article  PubMed  CAS  Google Scholar 

  • Cai R, Hettiarachchy NS, Jalaluddin M (2003) High-performance liquid chromatography determination of phenolic constituents in 17 varieties of cowpeas. J Agric Food Chem 51:1623–1627

    Article  PubMed  CAS  Google Scholar 

  • Cai YZ, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  PubMed  CAS  Google Scholar 

  • Calliste CA, Trouillas P, Allais DP, Simon A, Duroux JL (2001) Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviors of seven plants. J Agric Food Chem 49:3321–3327

    Article  PubMed  CAS  Google Scholar 

  • Cano A, Hernández-Ruíz J, García-Cánovas F, Acosta M, Arnao MB (1998) An end-point method for estimation of the total antioxidant activity in plant material. Phytochem Anal 9:196–202

    Article  CAS  Google Scholar 

  • Cano A, Alcaraz O, Acosta M, Arnao MB (2002) On-line antioxidant activity determination: comparison of hydrophilic and lipophilic antioxidant activity using the ABTS·+ assay. Redox Rep 7:103–109

    Article  PubMed  CAS  Google Scholar 

  • Cao GH, Prior RL (1998) Comparison of different analytical methods for assessing the total antioxidant capacity of human serum. Clin Chem 44:1309–1315

    PubMed  CAS  Google Scholar 

  • Cao G, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Biol Med 14:303–311

    Article  CAS  Google Scholar 

  • Cao G, Verdon CP, Wu AH, Wang H, Prior RL (1995) Automated assay of oxygen radical absorbance capacity with the COBAS FARA II. Clin Chem 41:1738–1744

    PubMed  CAS  Google Scholar 

  • Chai PC, Long LH, Halliwell B (2003) Contribution of hydrogen peroxide to the cytotoxicity of green tea and red wines. Biochem Bioph Res Co 304:650–654

    Article  CAS  Google Scholar 

  • Chen JH, Ho CT (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45:2374–2378

    Article  CAS  Google Scholar 

  • Chen ZY, Chan PT, Ho KY, Fung KP, Wang J (1996) Antioxidative activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem Phys Lipids 79:157–163

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Lindmark-Mansson H, Gorton L, Akesson B (2003) Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int Dairy J 13:927–935

    Article  CAS  Google Scholar 

  • Chimi H, Cillard J, Cillard P, Rahmani M (1991) Peroxyl and hydroxyl radical scavenging activity of some natural phenolic antioxidants. J Am Oil Chem Soc 68:307–312

    Article  CAS  Google Scholar 

  • Chung YC, Chang CT, Chao WW, Lin CF, Chou ST (2002) Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J Agric Food Chem 50:2454–2458

    Article  PubMed  CAS  Google Scholar 

  • Çoban TA, Beydemir Ş, Gülçin İ, Ekinci D (2007) Morphine inhibits erythrocyte carbonic anhydrase in vitro and in vivo. Biol Pharm Bull 30:2257–2261

    Article  PubMed  Google Scholar 

  • Corbett JT (1989) The scopoletin assay for hydrogen peroxide. A review and a better method. J Biochem Biophys Methods 18:297–307

    Article  PubMed  CAS  Google Scholar 

  • Costa D, Fernandes E, Santos JLM, Pinto DCGA, Silva AMS, Lima JLFC (2007) Noncellular fluorescence microplate screening assay for scavenging activity against singlet oxygen. Anal Bioanal Chem 387:2071–2081

    Article  PubMed  CAS  Google Scholar 

  • Cuppett S, Schnepf M, Hall C (1997) Natural antioxidant-are they a reality? Natural antioxidants: chemistry, health effects, and applications. AOCS Press, Champaign

    Google Scholar 

  • Cuvelier ME, Richard H, Berst C (1992) Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci Biotech Biochem 56:324–325

    Article  CAS  Google Scholar 

  • Dargel R (1992) Lipid peroxidation-a common pathogenetic mechanism? Exp Toxicol Pathol 44:169–181

    Article  PubMed  CAS  Google Scholar 

  • Das NP, Pereira TA (1990) Effects of flavonoids on thermal autoxidation of palm oil: structure-activity relationship. J Am Oil Chem Soc 67:255–258

    Article  CAS  Google Scholar 

  • Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    PubMed  CAS  Google Scholar 

  • Davies KJA (2000) Oxidative stress, antioxidant defenses, and damage removal, repair and replacement systems. IUBMB Life 50:279–289

    Article  PubMed  CAS  Google Scholar 

  • Davies MJ (2004) Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 3:17–25

    Article  PubMed  CAS  Google Scholar 

  • Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malonaldehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328

    Article  PubMed  Google Scholar 

  • DeLange RJ, Glazer AN (1989) Phycoerythrin fluorescence-based assay for peroxy radicals: a screen for biologically relevant protective agents. Anal Biochem 177:300–306

    Article  PubMed  CAS  Google Scholar 

  • Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophy 274:532–538

    Article  CAS  Google Scholar 

  • Diplock AT, Charleux JL, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Vina-Ribes J (1998) Functional food science and defence against reactive oxidative species. Brit J Nut 80:77–112

    Article  Google Scholar 

  • Dragsted LO, Strube M, Leth T (1997) Dietary levels of plant phenols and other non-nutritive components: could they prevent cancer? Eur J Cancer Prev 6:522–528

    Article  PubMed  CAS  Google Scholar 

  • Duh PD (1998) Antioxidant activity of burdock (Arctium lappa Linne): its scavenging effect on free radical and active oxygen. JAm Oil Chem Soc 75:455–465

    Article  CAS  Google Scholar 

  • Dürken M, Agbenu J, Finckh B, Hubner C, Pichlmeier U, Zeller W, Winkler K, Zander A, Kohlschutter A (1995) Deteriorating free radical-trapping capacity and antioxidant status in plasma during bone marrow transplantation. Bone Marrow Transplant 15:757–762

    PubMed  Google Scholar 

  • Dziedzic SZ, Hudson BJF (1984) Phenolic acids and related compounds as antioxidants for edible oils. Food Chem 14:45–51

    Article  CAS  Google Scholar 

  • Eberhardt MV, Lee CY, Liu RH (2000) Antioxidant activity of fresh apples. Nature 405:903–904

    PubMed  CAS  Google Scholar 

  • Ebermann R, Alth G, Kreitner M, Kubin AJ (1996) Natural products derived from plants as potential drugs for the photodynamic destruction of tumor cells. Photochem Photobiol B 36:95–97

    Article  CAS  Google Scholar 

  • Elmastas M, Gülçin İ, Işıldak Ö, Küfrevioğlu Öİ, İbaoğlu K, Aboul-Enein HY (2006a) Antioxidant capacity of bay (Laurus nobilis L.) leave extracts. J Iran Chem Soc 3:258–266

    CAS  Google Scholar 

  • Elmastas M, Türkekul İ, Öztürk L, Gülçin İ, Işıldak Ö, Aboul-Enein HY (2006b) The antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta). Comb Chem High T Scr 9:443–448

    CAS  Google Scholar 

  • Elmastaş M, Gülçin İ, Beydemir Ş, Küfrevioğlu Öİ, Aboul-Enein HY (2006) A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) seeds extracts. Anal Lett 39:47–65

    Article  CAS  Google Scholar 

  • Esterbauer H, Gebicki J, Puhl H, Jurgens G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Rad Biol Med 13:341–390

    Article  PubMed  CAS  Google Scholar 

  • Etminan M, Gill SS, Samii A (2005) Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol 4:362–365

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Davoine C (2007) Reactive electrophile species. Curr Opin Plant Biol 10:380–386

    Article  PubMed  CAS  Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in the presence of iron. J Chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature 408:240–247

    Article  CAS  Google Scholar 

  • Fiorucci SB, Golebiowski J, Cabrol-Bass D, Antonczak S (2007) DFT study of quercetin activated forms involved in antiradical, antioxidant, and prooxidant biological processes. J Agric Food Chem 55:903–911

    Article  PubMed  CAS  Google Scholar 

  • Fogliano V, Verde V, Randazzo G, Ritieni A (1999) Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J Agric Food Chem 47:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Folin O (1927) Tyrosine and tryptophan determinations in proteins. J Biol Chem 73:649–672

    Google Scholar 

  • Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080

    Article  PubMed  CAS  Google Scholar 

  • Foti M, Piattelli M, Baratta MT, Ruberto G (1996) Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. Structure-activity relationship. J Agric Food Chem 44:497–501

    Article  CAS  Google Scholar 

  • Foti MC, Daquino C, Geraci C (2004a) Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Org Chem 69:5888–5896

    Article  CAS  Google Scholar 

  • Foti MC, Daquino C, Geraci C (2004b) Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH· radical in alcoholic solutions. J Org Chem 69:2309–2314

    Article  PubMed  CAS  Google Scholar 

  • Frankel EN (1996) Antioxidants in lipid foods and their impact on food quality. Food Chem 57:51–55

    Article  CAS  Google Scholar 

  • Frankel EN (1998) Lipid oxidation, Dundee. The Oily Press

  • Frankel EN, German JB (2006) Antioxidants in foods and health: problems and fallacies in the field. J Sci Food Agric 86:1999–2001

    Article  CAS  Google Scholar 

  • Fridovich I (1986) Superoxide dismutases. Adv Enzymol 58:61–97

    PubMed  CAS  Google Scholar 

  • Fridovich I (1989) Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264:7761–7764

    PubMed  CAS  Google Scholar 

  • Fu YL, Krasnovsky AA, Foote CS (1997) Quenching of singlet oxygen and sensitized delayed phthalocyanine fluorescence. J Phys Chem A 101:2552–2554

    Article  CAS  Google Scholar 

  • Ganesan K, Kumar KS, Rao PVS (2011) Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innov Food Sci Emerg 12:73–78

    Article  CAS  Google Scholar 

  • García-Parrilla MC (2008) Antioxidantes en la dieta mediterránea. Nutrición Clínica en Medicina 3:129–140

    Google Scholar 

  • Gardner PR, Fridovich I (1992) Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267:8757–8763

    PubMed  CAS  Google Scholar 

  • Ghiselli A, Serafini M, Maiani G, Azzini E, Ferro-Luzzi A (1995) A fluorescence-based method for measuring total plasma antioxidant capability. Free Radical Biol Med 18:29–36

    Article  CAS  Google Scholar 

  • Gil MI (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48:4581–4589

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN (1990) Phycoerythrin fluorescence-based assay for reactive oxygen species. Methods Enzymol 186:161–168

    Article  PubMed  CAS  Google Scholar 

  • Göçer H, Gülçin İ (2011) Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties. Int J Food Sci Nut. doi:10.3109/09637486.2011.585963

  • Godbout JP, Berg BM, Kelley KW, Johnson RW (2004) α-Tocopherol reduces lipopolysaccharide-induced peroxide radical formation and interleukin-6 secretion in primary murine microglia and in brain. J Neuroimmunol 149:101–109

    Article  PubMed  CAS  Google Scholar 

  • Goldstein S, Meyerstein D, Czapski G (1993) The Fenton reagents. Free Radical Biol Med 15:435–445

    Article  CAS  Google Scholar 

  • Grisham MB, Johnson GG, Lancaster JR (1996) Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol 268:237–246

    Article  PubMed  CAS  Google Scholar 

  • Grosch W (1982) Lipid degradation products and flavour. In: Morton ID, Macleod AJ (eds) Food flavours part a, chapter 5

  • Guillen-Sans R, Guzman-Chozas M (1998) The thiobarbituric acid (TBA) reaction in foods: a review. Crit Rev Food Sci Nut 38:315–330

    Article  CAS  Google Scholar 

  • Gülçin İ (2002) Determination of antioxidant activity, characterization of oxidative enzymes and investigation of some in vivo properties of nettle (Urtica dioica). Ph.D. Thesis, Atatürk University, p 12

  • Gülçin İ (2005) The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int J Food Sci Nut 56:491–499

    Article  CAS  Google Scholar 

  • Gülçin İ (2006a) Antioxidant and antiradical activities of L-Carnitine. Life Sci 78:803–811

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ (2006b) Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology 217:213–220

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ (2007) Comparison of in vitro antioxidant and antiradical activities of l-tyrosine and L-Dopa. Amino Acids 32:431–438

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ (2008) Measurement of antioxidant ability of melatonin and serotonin by the DMPD and CUPRAC methods as trolox equivalent. J Enzyme Inhib Med Chem 23:871–876

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ (2009) Antioxidant activity of L-Adrenaline: an activity-structure insight. Chem Biol Interact 179:71–80

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ (2010) Antioxidant properties of resveratrol: a structure-activity insight. Innov Food Sci Emerg 11:210–218

    Article  CAS  Google Scholar 

  • Gülçin İ, Daştan A (2007) Synthesis of dimeric phenol derivatives and determination of in vitro antioxidant and radical scavenging activities. J Enzyme Inhib Med Chem 22:685–695

    Article  CAS  Google Scholar 

  • Gülçin İ, Büyükokuroğlu ME, Oktay M, Küfrevioğlu Öİ (2002a) On the in vitro antioxidant properties of melatonin. J Pineal Res 33:167–171

    Article  PubMed  Google Scholar 

  • Gülçin İ, Oktay M, Küfrevioğlu Öİ, Aslan A (2002b) Determinations of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol 79:325–329

    Article  PubMed  Google Scholar 

  • Gülçin İ, Büyükokuroğlu ME, Küfrevioğlu Öİ (2003a) Metal chelating and hydrogen peroxide scavenging effects of melatonin. J Pineal Res 34:278–281

    Article  PubMed  Google Scholar 

  • Gülçin İ, Büyükokuroğlu ME, Oktay M, Küfrevioğlu Öİ (2003b) Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. Subsp. pallsiana (Lamb.) Holmboe. J Ethnopharmacol 86:51–58

    Article  PubMed  Google Scholar 

  • Gülçin İ, Oktay M, Kireçci E, Küfrevioğlu Öİ (2003c) Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 83:371–382

    Article  CAS  Google Scholar 

  • Gülçin İ, Beydemir Ş, Alici HA, Elmastaş M, Büyükokuroğlu ME (2004a) In vitro antioxidant properties of morphine. Pharmacol Res 49:59–66

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ, Küfrevioğlu Öİ, Oktay M, Büyükokuroğlu ME (2004b) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215

    Article  PubMed  Google Scholar 

  • Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R (2004c) Antioxidant activity of saponins isolated from ivy: a-Hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside F. Planta Med 70:561–563

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ, Şat İG, Beydemir Ş, Elmastaş M, Küfrevioğlu Öİ (2004d) Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem 87:393–400

    Article  CAS  Google Scholar 

  • Gülçin İ, Şat İG, Beydemir Ş, Küfrevioğlu Öİ (2004e) Evaluation of the in vitro antioxidant properties of extracts of broccoli (Brassica oleracea L.). Ital J Food Sci 16:17–30

    Google Scholar 

  • Gülçin İ, Berashvili D, Gepdiremen A (2005a) Antiradical and antioxidant activity of total anthocyanins from Perilla pankinensis decne. J Ethnopharmacol 101:287–293

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ, Beydemir Ş, Hisar O (2005b) The effect of α-tocopherol on the antioxidant enzymes activities and lipid peroxidation of rainbow trout (Oncorhynchus mykiss). Acta Vet Hung 53:425–433

    Article  PubMed  Google Scholar 

  • Gülçin İ, Beydemir Ş, Şat İG, Küfrevioğlu Öİ (2005c) Evaluation of antioxidant activity of cornelian cherry (Cornus mas L.). Acta Aliment Hung 34:193–202

    Article  Google Scholar 

  • Gülçin İ, Elias R, Gepdiremen A, Boyer L (2006a) Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.). Eur Food Res Technol 223:759–767

    Article  CAS  Google Scholar 

  • Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R (2006b) Antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(β-D-glucopyranosyl)-hederagenin. Phytother Res 20:130–134

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R (2006c) Screening of antioxidant and antiradical activity of monodesmosides and crude extract from Leontice smirnowii Tuber. Phytomedicine 13:343–351

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ, Elias R, Gepdiremen A, Boyer L, Köksal E (2007a) A comparative study on the antioxidant activity of fringe tree (Chionanthus virginicus L.) extracts. Afr J Biotechnol 6:410–418

    Google Scholar 

  • Gülçin İ, Elmastas M, Aboul-Enein HY (2007b) Determination of antioxidant and radical scavenging activity of basil (Ocimum basilicum) assayed by different methodologies. Phytother Res 21:354–361

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ, Oktay M, Köksal E, Şerbetçi H, Beydemir Ş, Küfrevioglu ÖI (2008a) Antioxidant and radical scavenging activities of uric acid. Asian J Chem 20:2079–2090

    Google Scholar 

  • Gülçin İ, Tel AZ, Kirecci E (2008b) Antioxidant, antimicrobial, antifungal and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. Int J Food Propert 11:450–471

    Article  CAS  Google Scholar 

  • Gülçin İ, Elias R, Gepdiremen A, Taoubi K, Köksal E (2009) Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.). Wood Sci Technol 43:195–212

    Article  CAS  Google Scholar 

  • Gülçin İ, Bursal E, Şehitoğlu HM, Bilsel M, Gören AC (2010a) Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem Toxicol 48:2227–2238

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ, Elias R, Gepdiremen A, Chea A, Topal F (2010b) Antioxidant activity of bisbenzylisoquinoline alkaloids from Stephania rotunda: Cepharanthine and fangchinoline. J Enzyme Inhib Med Chem 25:44–53

    Article  PubMed  CAS  Google Scholar 

  • Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY (2010c) Radical scavenging and antioxidant activity of tannic acid. Arab J Chem 3:43–53

    Article  CAS  Google Scholar 

  • Gülçin İ, Topal F, Çakmakçı R, Gören AC, Bilsel M, Erdoğan U (2011a) Pomological features, nutritional quality, polyphenol content analysis and antioxidant properties of domesticated and three wild ecotype forms of raspberries (Rubus idaeus L.). J Food Sci 76:C585–C593

    Article  CAS  Google Scholar 

  • Gülçin İ, Topal F, Oztürk Sarıkaya SB, Bursal E, Gören AC, Bilsel M (2011b) Polyphenol contents and antioxidant properties of medlar (Mespilus germanica L.). Rec Nat Prod 5:158–175

    Google Scholar 

  • Gülçin İ, Gagua N, Beydemir S, Bayram R, Bakuridze A, Gepdiremen A (2011c) Apoptotic, antioxidant, antiradical and antiglaucoma effects of majdine and isomajdine from Vinca herbacea Waldst. and Kit. J Enzyme Inhib Med Chem. doi:10.3109/14756366.2011.604318

  • Gülçin İ, Elmastaş M, Aboul-Enein HY (2011d) Antioxidant activity of clove oil-a powerful antioxidant source. Arab J Chem. doi:10.1016/j.arabjc.2010.09.016

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc Roy Soc Lond Series A 147:332–351

    Article  CAS  Google Scholar 

  • Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Reichel TL (1998) High molecular weight plant phenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892

    Article  CAS  Google Scholar 

  • Halliwell B (1990) How to characterize a biological antioxidant. Free Rad Res Commun 9:1–32

    Article  CAS  Google Scholar 

  • Halliwell B (1995) Antioxidant characterization; methodology and mechanism. Biochem Pharmacol 49:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1996) Oxidative stress, nutrition and health. Free Radical Res 25:57–74

    Article  CAS  Google Scholar 

  • Halliwell B (1997) Antioxidants in human health and disease. Ann Rev Nut 16:33–50

    Article  Google Scholar 

  • Halliwell B (2006) Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci 31:509–515

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nut 57:715–725

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicology, oxygen radicals, transition metals and disease. Biochem J 219:1–4

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Meth Enzymol 186:1–85

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Murcia MA, Chirico S, Aruoma OI (1995) Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr 35:7–20

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Clement MV, Long LH (2000) Hydrogen peroxide in human body. FEBS Lett 486:10–13

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (1986) In: Cody V, Middleton E, Harborne JB, Alan R (eds) Plant flavonoids in biology and medicine. Liss, New York, pp 15–24

  • Harborne JB, Baxter H, Moss GP (1999) Phytochemical dictionary: handbook of bioactive compounds from plants, 2nd edn. Taylor and Francis, London

    Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  • Herrmann K (1976) Flavonoids and flavones in food plants: a review. J Food Technol 11:433–448

    Article  CAS  Google Scholar 

  • Herrmann K (1993) In pflanzlichen lebensmitteln vorkommende flavonoide als antioxidantien. Gordian 93:108–111

    CAS  Google Scholar 

  • Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the zupthen elderly study. Lancet 342:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Hevel JM, Marletta MA (1994) Nitric-oxide synthase assays. Methods Enzymol 233:250–253

    Article  PubMed  CAS  Google Scholar 

  • Hippeli S, Elstner EF (1999) Transition metal ion-catalyzed oxygen activation during pathogenic processes. FEBS Lett 443:1–7

    Article  PubMed  CAS  Google Scholar 

  • Hochstein P, Atallah AS (1988) The nature of oxidants and antioxidant systems in the inhibition of mutation and cancer. Mutat Res 202:363–375

    PubMed  CAS  Google Scholar 

  • Hou YC, Janczuk A, Wang PG (1999) Current trends in the development of nitric oxide donors. Curr Pharm Des 5:417–441

    PubMed  CAS  Google Scholar 

  • Hu C, Ding Y (1996) Antioxidant effect of flavonoids in different oxidation systems. Food Fermentation Industries 22:46–53

    Google Scholar 

  • Hu JP, Calomme M, Lasure A, De Bruyne T, Peters L, Vlietinck A, Van den Berghe DA (1995) Structure–activity relationship of flavonoids with superoxide scavenging activity. Biol Trace Element Res 47:327–331

    Article  CAS  Google Scholar 

  • Huang DJ, Ou BX, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002a) Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated â-cyclodextrin as the solubility enhancer. J Agric Food Chem 50:1815–1821

    Article  PubMed  CAS  Google Scholar 

  • Huang DJ, Ou BX, Hampsch-Woodill M, Flanagan JA, Prior RL (2002b) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437–4444

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  PubMed  CAS  Google Scholar 

  • Hudson JF (1990) Food antioxidants. Elsevier Applied Science, London

    Book  Google Scholar 

  • Husain SR, Cillard J, Cillard P (1987) Hydroxyl radical-scavenging activity of flavonoids. Phytochemistry 26:2489–2491

    Article  CAS  Google Scholar 

  • Inatani R, Nakatani N, Fuwa H (1983) Antioxidative effect of the constituents of rosemary (Rosemarinus officinalis L.) and their derivatives. Agric Biol Chem 47:521–528

    Article  CAS  Google Scholar 

  • Innocenti A, Gülçin İ, Scozzafava A, Supuran CT (2010a) Carbonic anhydrase inhibitors. Antioxidant polyphenol natural products effectively inhibit mammalian isoforms I-XV. Bioorg Med Chem Lett 20:5050–5053

    Article  PubMed  CAS  Google Scholar 

  • Innocenti A, Öztürk Sarıkaya SB, Gülçin İ, Supuran CT (2010b) Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I-XIV with a series of natural product polyphenols and phenolic acids. Bioorg Med Chem 18:2159–2164

    Article  PubMed  CAS  Google Scholar 

  • Jayasinghe C, Gotoh N, Aoki T, Wada S (2003) Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J Agric Food Chem 51:4442–4449

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, Christen S, Shigenaga MK, Ames BN (2001) Gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nut 74:714–722

    CAS  Google Scholar 

  • Johnson EJ, Hammond BR, Yeum KJ, Qin J, Wang XD, Castaneda C, Snodderly DM, Russell RM (2000) Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Am J Clin Nutr 71:1555–1562

    PubMed  CAS  Google Scholar 

  • Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) Flavonoids as antioxidants. J Am Chem Soc 116:4846–4851

    Article  CAS  Google Scholar 

  • Jovanovic SV, Steenken S, Boone CW, Simic MG (1999) H-atom transfer is a preferred antioxidant mechanism of curcumin. J Am Chem Soc 121:9677–9681

    Article  CAS  Google Scholar 

  • Kadoma Y, Ishihara M, Fujisawa S (2006) A quantitative approach to the free radical interaction between alpha-tocopherol and the coantioxidants eugenol, resveratrol or ascorbate. In Vivo 20:61–67

    PubMed  CAS  Google Scholar 

  • Karaman Ş, Tütem E, Başkan KS, Apak R (2009) Comparison of total antioxidant capacity and phenolic composition of some apple juices with combined HPLC-CUPRAC assay. Food Chem 120:1201–1209

    Article  CAS  Google Scholar 

  • Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M (2003) Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem 51:68–75

    Article  PubMed  CAS  Google Scholar 

  • Kaviarasan S, Naik GH, Gangabhagirathi R, Anuradha CV, Priyadarsini KI (2007) In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem 103:31–37

    Article  CAS  Google Scholar 

  • Kawabata J, Okamoto Y, Kodama A, Makimoto T, Kasai T (2002) Oxidative dimers produced from protocatechuic and gallic esters in the DPPH radical scavenging reaction. J Sci Food Agric 50:5468–5471

    Article  CAS  Google Scholar 

  • Kazazica SP, Butkovica V, Srazica D, Klasinc L (2006) Gas-phase ligation of Fe+ and Cu+ ions with some flavonoids. J Agric Food Chem 54:8391–8396

    Article  CAS  Google Scholar 

  • Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    Article  PubMed  CAS  Google Scholar 

  • King DW, Lin J, Kester DR (1991) Spectrophotometric determination of iron (II) in seawater at nanomolar concentrations. Anal Chim Acta 247:125–132

    Article  CAS  Google Scholar 

  • Klein E, Lukes V, Ilcin M (2007) DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chem Phys 336:51–57

    Article  CAS  Google Scholar 

  • Kohri S, Fujii H, Oowada S, Endoh N, Sueishi Y, Kusakabe M, Shimmei M, Kotake Y (2009) An oxygen radical absorbance capacity-like assay that directly quantifies the antioxidant’s scavenging capacity against AAPH-derived free radicals. Anal Biochem 386:167–171

    Article  PubMed  CAS  Google Scholar 

  • Köksal E, Gülçin İ (2008) Antioxidant activity of cauliflower (Brassica oleracea L.). Turk J Agric For 32:65–78

    Google Scholar 

  • Köksal E, Gülçin İ, Sarıkaya Ö, Beyza S, Bursal E (2009) On the in vitro antioxidant activity of silymarin. J Enzyme Inhib Med Chem 24:395–405

    Article  PubMed  Google Scholar 

  • Krishnadev N, Meleth AD, Chew EY (2010) Nutritional supplements for age-related macular degeneration. Curr Opin Ophthalmol 21:184–189

    Article  PubMed  Google Scholar 

  • Krol W, Czuba ZP, Threadgill MD, Cunningham BDM, Pietsz G (1995) Inhibition of nitric oxide (NO.) production in murine macrophages by flavones. Biochem Pharmacol 50:1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Kroon PA, Williamson G (1999) Hydroxycinnamates in plants and food: current and future perspectives. J Sci Food Agric 79:355–361

    Article  CAS  Google Scholar 

  • Lampi AM, Piironen V (1998) α and γ-Tocopherols as efficient antioxidants in butter oil triacylglycerols. Fett/Lipid 100:292–295

    Article  CAS  Google Scholar 

  • Lavelli V, Hippeli S, Peri C, Elstner EF (1999) Evaluation of radical scavenging activity of fresh and air-dried tomatoes by three model reactions. J Agric Food Chem 47:3826–3831

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Rossi MR, Coichev N, Moya HD (2011) The reduction of Cu(II)/neocuproine complexes by some polyphenols: total polyphenols determination in wine samples. Food Chem 126:679–686

    Article  CAS  Google Scholar 

  • Leinonen J, Rantalaiho V, Lehtimaki T, Koivula T, Wirta O, Pasternack A, Alho H (1998) The association between the total antioxidant potential of plasma and the presence of coronary heart disease and renal dysfunction in patients with NIDDM. Free Radical Res 29:273–281

    Article  CAS  Google Scholar 

  • Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffer AEMF, Rietjens IMCM (2001) The influence of pH on the antioxidant properties and the mechanisms of antioxidant action of hydroxyflavones. Free Radical Biol Med 31:869–881

    Article  CAS  Google Scholar 

  • Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR, Park JB, Lazarev A, Graumlich JF, King J, Cantilena LR (1996) Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. P Natl Acad Sci USA 93:3704–3709

    Article  CAS  Google Scholar 

  • Lichtenstein AH (2009) Nutrient supplements and cardiovascular disease: a heartbreaking story. J Lipid Res 50:S429–S433

    Article  PubMed  CAS  Google Scholar 

  • Liochev SI, Fridovich I (1995) Superoxide from glucose oxidase or from nitroblue tetrazolium. Arch Biochem Biophys 318:408–410

    Article  PubMed  CAS  Google Scholar 

  • Litwinienko G, Ingold KU (2003) Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2, 2-diphenyl-l-picrylhydrazyl (DPPH) in alcohols. J Org Chem 68:3433–3438

    Article  PubMed  CAS  Google Scholar 

  • Litwinienko G, Ingold KU (2004) Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Org Chem 69:5888–5896

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo Y, Azqueta A, Luna L, Bonilla F, Dominguez G, Collins AR (2008) The carotenoid β-cryptoxanthin stimulates the repair of DNA oxidation damage in addition to acting as an antioxidant in human cells. Carcinogenesis 30:308–314

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • MacDonald-Wicks LK, Wood LG, Garg ML (2006) Methodology for the determination of biological antioxidant capacity in vitro: a review. J Sci Food Agric 86:2046–2056

    Article  CAS  Google Scholar 

  • Macheix JJ, Fleurit A, Billot J (1990) Fruit phenolics. CRC Press, Boca Raton

    Google Scholar 

  • Magalhaes LM, Segundo MA, Reis S, Lima JLFC, Rangel AOSS (2006) Automatic method for the determination of Folin-Ciocalteu reducing capacity in food products. J Agric Food Chem 54:5241–5246

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes LM, Segundo MA, Reis S, Lima JLFC (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613:1–19

    Article  PubMed  CAS  Google Scholar 

  • Magalhães LM, Santos M, Segundo MA, Reis S, Lima JLFC (2009) Flow injection based methods for fast screening of antioxidant capacity. Talanta 77:1559–1566

    Article  PubMed  CAS  Google Scholar 

  • Maiani G, Caston MJ, Catasta G, Toti E, Cambrodon IG, Bysted A, Granado-Lorencio F, Olmedilla-Alonso B, Knuthsen P, Valoti M, Böhm V, Mayer-Miebach E, Behsnilian D, Schlemmer U (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nut Food Res 53:S194–S218

    Article  Google Scholar 

  • Mangels AR, Block G, Frey CM, Patterson BH, Taylor PR, Norkus EP, Levander OA (1993) T he bioavailability to humans of ascorbic acid from oranges, orange juice and cooked broccoli is similar to that of synthetic ascorbic acid. J Nut 123:1054–1061

    CAS  Google Scholar 

  • Maranz S, Wiesman Z, Garti N (2003) Phenolic constituents of shea (Vitellaria paradoxa) kernels. J Agric Food Chem 51:6268–6273

    Article  PubMed  CAS  Google Scholar 

  • Marinova EM, Yanishlieva NV (1994) Effect of lipid unsaturation on the antioxidative activity of some phenolic acids. J Amer Oil Chem Soc 71:427–434

    Article  CAS  Google Scholar 

  • Marnett LJ (1999) Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 424:83–95

    PubMed  CAS  Google Scholar 

  • Mastelic J, Jerkovic I, Blaževic I, Poljak-Blaži M, Borovic S, Ivancic-Bace I, Smrecki V, Žarkovic N, Brcic-Kostic K, Vikiç-Topic D, Müller N (2008) Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J Agric Food Chem 56:3989–3996

    Article  PubMed  CAS  Google Scholar 

  • Matsuo M, Kaneko T (1999) Lipid peroxidation. In: Yu BP (ed) Methods in aging research, chapter 25. CRC Press, Boca Raton, pp 571–606

    Google Scholar 

  • Merz JH, Waters WA (1947) The mechanism of oxidation of alcohols by Fenton’s reagent. Discuss Faraday Soc 2:179–188

    Article  Google Scholar 

  • Middleton EJR, Kandaswami C (1993) In the flavonoids advances in research since 1986. In: Harborne JB (ed) Chapman & Hall/CRC, New York

  • Miguel MG (2010) Antioxidant activity of medicinal and aromatic plants. A review. Flavour Fragr J 25:291–312

    Article  CAS  Google Scholar 

  • Milardovic S, Ivekovic D, Ruwenjak V, Grabaric BS (2005) Use of DPPH/DPPH redox couple for biamperometric determination of antioxidant activity. Electroanalysis 17:1847–1853

    Article  CAS  Google Scholar 

  • Milardovic S, Ivekovic D, Grabaric BS (2006) A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry 68:175–180

    Article  PubMed  CAS  Google Scholar 

  • Miller NJ, Rice-Evans CA, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412

    PubMed  CAS  Google Scholar 

  • Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384:240–242

    Article  PubMed  CAS  Google Scholar 

  • Mingfu W, Simon JE, Aviles IF, He K, Zheng Q, Tadmor Y (2003) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem 51:601–608

    Article  CAS  Google Scholar 

  • Montedoro G, Cantarelli C (1969) Indagini sulle sostanze fenoliche presenti negli oli d’oliva. Riv Ital Sost Grasse 46:115–124

    CAS  Google Scholar 

  • Moore K, Roberts LJ (1998) Measurement of lipid peroxidation. Free Radic Res 28:659–671

    Article  PubMed  CAS  Google Scholar 

  • Mora A, Paya M, Rios JL, Alcaraz MJ (1990) Structure-activity relationship of polymethoxyflavonoids and other flavonoids as inhibitors of non-enzymic lipid peroxidation. Biochem Pharmacol 40:393–397

    Article  Google Scholar 

  • Mortensen A, Skibsted LH (1997) Importance of carotenoid structure in radical scavenging reactions. J Agric Food Chem 45:2970–2977

    Article  CAS  Google Scholar 

  • Mulholland CW, Strain JJ (1991) Serum total free radical trapping ability in acute myocardial infarction. Clin Bichem 24:437–441

    Article  CAS  Google Scholar 

  • Musialik M, Litwinienko G (2005) Scavenging of dpph* radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Org Lett 7:4951–4954

    Article  PubMed  CAS  Google Scholar 

  • Musialik M, Kuzmicz R, Pawłowski TS, Litwinienko G (2009) Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem 74:2699–2709

    Article  PubMed  CAS  Google Scholar 

  • Nagata N, Momose K, Ishida Y (1999) Inhibitory effects of catecholamines and anti-oxidants on the fluorescence Reaction of 4,5-diaminofluorescein, DAF-2, a novel indicator of nitric oxide. J Biochem 125:658–661

    PubMed  CAS  Google Scholar 

  • Naguib YMA (1998) A fluorometric method for measurement of peroxyl radical scavenging activities of lipophilic antioxidants. Anal Biochem 265:290–298

    Article  PubMed  CAS  Google Scholar 

  • Nair V, O’Neil CL, Wang PG (2008) Malondialdehyde. Encyclopedia of reagents for organic synthesis. Wiley, New York

    Google Scholar 

  • Nakamura Y, Tsuji S, Tonogai Y (2003) Method for analysis of tannic acid and its metabolites in biological samples: application to tannic acid metabolism in the rat. J Agric Food Chem 51:331–339

    Article  PubMed  CAS  Google Scholar 

  • Neff WE, Frankel EN, Weisleder D (1981) High-pressure liquid chromatography of autoxidised lipids: II. Hydroperoxy-cyclic peroxides and other secondary products from methyl linolenate. Lipids 16:439–448

    Article  CAS  Google Scholar 

  • Nenadis N, Boyle S, Bakalbassis EG, Tsimidou M (2003) An experimental approach to structure-activity relationships of caffeic and dihydrocaffeic acids and related monophenols. JAOCS 80:451–458

    Article  CAS  Google Scholar 

  • Niki E (1990) Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol 186:100–108

    Article  PubMed  CAS  Google Scholar 

  • Niki E, Tsuchiya J, Tanimura R, Kamiya Y (1982) Regeneration of vitamin E from a-chromanoxyl radical by glutathione and vitamin C. Chem Lett 27:789–792

    Article  Google Scholar 

  • Niki E, Kawakami A, Yamamoto Y, Kamiya Y (1985) Oxidation of lipids: VIII. Synergistic inhibition of oxidation of phosphatidylcholine liposome in aqueous dispersion by vitamin E and vitamin C. Bull Chem Soc Jap 58:1971–1975

    Article  CAS  Google Scholar 

  • Nishibayashi S, Asanuma M, Kohno R, GomezVargas M, Ogawa N (1996) Scavenging effects of dopamine agonists on nitric oxide radicals. J Neurochem 67:2208–2211

    Article  PubMed  CAS  Google Scholar 

  • Oktay M, Gülçin İ, Küfrevioğlu Öİ (2003) Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Lebensm WissenTechnol 36:263–271

    CAS  Google Scholar 

  • Omura K (1995) Antioxidant synergism between butylated hydroxyanisole and butylated hydroxytoluene. J Amer Oil Chem Soc 72:1565–1570

    Article  CAS  Google Scholar 

  • Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626

    Article  PubMed  CAS  Google Scholar 

  • Ou B, Hampsch-Woodill M, Flanagan J, Deemer EK, Prior RL, Huang D (2002a) Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as the probe. J Agric Food Chem 50:2772–2777

    Article  PubMed  CAS  Google Scholar 

  • Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002b) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50:3122–3128

    Article  PubMed  CAS  Google Scholar 

  • Ou B, Prior RL, Huang D (2005) The chemistry behind dietary antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  PubMed  CAS  Google Scholar 

  • Özcelik B, Lee JH, Min DB (2003) Effects of light, oxygen and pH on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method to evaluate antioxidants. J Food Sci 68:487–490

    Article  Google Scholar 

  • Öztürk Sarıkaya SB, Gülçin İ, Supuran CT (2010) Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chem Biol Drug Design 75:515–520

    Article  CAS  Google Scholar 

  • Öztürk Sarıkaya SB, Topal F, Şentürk M, Gülçin İ, Supuran CT (2011) In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorg Med Chem Lett 21:4259–4262

    Article  PubMed  CAS  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  PubMed  CAS  Google Scholar 

  • Packer L (1996) Nitric oxide. Part A: sources and detection of NO; NO synthase. Method Enzymol 268:331–340

    Google Scholar 

  • Paganga G, Miller N, Rice-Evans CA (1999) The polyphenolic content of fruits and vegetables and their antioxidant activities. What does a serving constitute? Free Radical Res 30:153–162

    Article  CAS  Google Scholar 

  • Palozza P, Krinsky NI (1992) Antioxidant effects of carotenoids in vivo and in vitro: an overview. Method Enzymol 268:127–136

    Google Scholar 

  • Papadopoulos G, Boskou D (1991) Antioxidant effect of natural phenols on olive oil. J Am Oil Chem Soc 68:669–671

    Article  CAS  Google Scholar 

  • Parejo I, Viladomat F, Bastida J, Rosas-Romero A, Flerlage N, Burillo J, Codina C (2002) Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled Mediterranean herbs and aromatic plants. J Agric Food Chem 50:6882–6890

    Article  PubMed  CAS  Google Scholar 

  • Pekkarinen SS, Heinonen IM, Hopia AI (1999a) Flavonoids quercetin, myricetin, kaemferol and (+)-catechin as antioxidants in methyl linoleate. J Sci Food Agric 79:499–506

    Article  CAS  Google Scholar 

  • Pekkarinen SS, Stöckmann H, Schwarz K, Heinonen IM, Hopia AI (1999b) Antioxidant activity and participation of phenolic acids in bulk and emulsified methyl linoleate. J Agric Food Chem 47:3036–3043

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini N, Serafini M, Colombi B, Del Río D, Salvatore S, Bianchi M, Brighenti F (2003) Total antioxidant capacity of plant foods, beverages, and oils consumed in Italy assessed by three different in vitro assays. J Nut 133:2812–2819

    CAS  Google Scholar 

  • Perez C, Sanchez J, Marmol F, Puig-Parellada P, Pouplana R (2007) Reactivity of biologically important NSAID compounds with superoxide (O2 .−), nitric oxide (.NO) and cyclooxygenase inhibition. QSAR Comb Sci 26:368–377

    Article  CAS  Google Scholar 

  • Pérez-Jiménez J, Saura-Calixto F (2005) Literature data may underestimate the actual antioxidant capacity of cereals. J Agric Food Chem 53:5036–5040

    Article  PubMed  CAS  Google Scholar 

  • Peterson GL (1979) Review of the folin phenol protein quantitation method of Lowery et al. Anal Biochem 18:201–220

    Article  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Pokorny J (1987) Major factors affecting the autoxidation of lipids’. In: Chan HWS (ed) Autoxidation of unsaturated lipids. Academic Press, London, pp 141–206

    Google Scholar 

  • Pokorny J (1988) Autoxidation of unsaturated lipids. In: Chan H (ed) Academic Press, London, p 141

  • Pokorny J (1999) Antioxidants in food preservation’. In: Shafiur Rahman M (ed) Handbook of food preservation. Marcel Dekker, New York, pp 309–337

    Google Scholar 

  • Pokorny J, Yanishlieva N, Gordon M (2000) Antioxidants in food. Practical applications. Published in North and South America by CRC Press LLC, Corporate Blvd, NW Boca Raton FL 33431, USA

  • Ponka P (1999) Cellular iron metabolism. Kidney Int 55:S2–S11

    Article  Google Scholar 

  • Pratt DE (1976) Role of flavones and related compounds in retarding lipidoxidative flavor changes in foods. ACS Symp Ser 26:1–13

    Article  CAS  Google Scholar 

  • Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radical Biol Med 27:1173–1181

    Article  CAS  Google Scholar 

  • Prior RL, Wu XL, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  PubMed  CAS  Google Scholar 

  • Proteggente AR, Pannala AS, Paganga G, Van Buren L, Wagner E, Wiseman S, Van De Put F, Dacombe C, Rice-Evans CA (2002) The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Res 36:217–233

    Article  CAS  Google Scholar 

  • Pryor WA, Stanley JP (1975) Letter: A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J Org Chem 40:3615–3617

    Article  PubMed  CAS  Google Scholar 

  • Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402

    Article  PubMed  CAS  Google Scholar 

  • Pulido R, Hernandez-Garcia M, Saura-Calixto F (2003) Contribution of beverages to the intake of lipophilic and hydrophilic antioxidants in the Spanish diet. Eur J Clin Nutr 57:1275–1282

    Article  PubMed  CAS  Google Scholar 

  • Quick KL, Hardt JI, Dugan LL (2000) Rapid microplate assay for superoxide scavenging efficiency. J Neurosci Methods 97:138–144

    Article  Google Scholar 

  • Ramanathan L, Das NP (1993) Effect of natural copper chelating components on the pro-oxidant activity of ascorbic acid in steam-cooked ground fish. Int J Food Sci Technol 28:279–288

    CAS  Google Scholar 

  • Ratty AK, Das NP (1988) Effect of flavonoids on nonenzymatic lipid peroxidation: structure–activity relationship. Biochem Med Metab Biol 39:69–79

    Article  PubMed  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med 26:1231–1237

    Article  CAS  Google Scholar 

  • Reaven PD, Witztum JL (1996) Oxidized low density lipoproteins in atherogenesis: role of dietary modification. Ann Rev Nut 16:51–71

    Article  CAS  Google Scholar 

  • Regoli F, Winston GW (1999) Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol Appl Pharmacol 156:96–105

    Article  PubMed  CAS  Google Scholar 

  • Riccioni G (2009) Carotenoids and cardiovascular disease. Curr Atheroscler Rep 11:434–439

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans C, Miller NJ (1994) Total antioxidant status in plasma and body fluids. Method Enzymol 234:279–293

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ (1996) Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc T 24:790–795

    CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio Med 20:933–956

    Article  CAS  Google Scholar 

  • Rimbach G, Pallauf J (1998) Phytic acid inhibits free radical formation in vitro but does not affect liver oxidant or antioxidant status in growing rats. J Nutr 128:1950–1955

    PubMed  CAS  Google Scholar 

  • Rimm EB, Ascherio A, Giovannucci E, Spiegalman D, Stampfer M, Willett W (1996a) Vegetable, fruits, and cereal fiber intake and risk of coronary heart disease among men. JAMAJ-Am Med Assoc 275:447–451

    Article  CAS  Google Scholar 

  • Rimm EB, Katan MB, Ascherio A, Stampfer MJ, Willett W (1996b) Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann Intern Med 125:384–389

    PubMed  CAS  Google Scholar 

  • Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841

    Article  PubMed  CAS  Google Scholar 

  • Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51:2866–2887

    Article  PubMed  CAS  Google Scholar 

  • Rock CL, Jacob RA, Bowen PE (1996) Update on the biological characteristics of the antioxidant micronutrients: vitamin C, vitamin E, and the carotenoids. J Am Diet Assoc 96:693–702

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Amaya DB, Kimura M, Godoy HT, Amaya-Farfan J (2008) Updated Brazilian database on food carotenoids: factors affecting carotenoid composition. J Food Comp Anal 21:445–463

    Article  CAS  Google Scholar 

  • Roginsky V, Lissi EA (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 92:235–254

    Article  CAS  Google Scholar 

  • Roginsky VA, Barsukova TK, Remosova AA, Bors W (1996) Moderate antioxidative efficiency of flavonoids during peroxidation of methyl linoleate in homogenous and micellar solutions. J Am Oil Chem Soc 73:777–786

    Article  CAS  Google Scholar 

  • Ross KA, Beta TS, Arntfield D (2009) A comparative study on the phenolic acids identified and quantified in dry beans using HPLC as affected by different extraction and hydrolysis methods. Food Chem 113:336–344

    Article  CAS  Google Scholar 

  • Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Samadi A, Soriano E, Revuelta J, Valderas C, Chioua M, Garrido I, Bartolomé B, Tomassolli I, Ismaili L, González-Lafuente L, Villarroya M, García AG, Oset-Gasque MJ, Marco-Contelles J (2011) Synthesis, structure, theoretical and experimental in vitro antioxidant/pharmacological properties of a-aryl, N-alkyl nitrones, as potential agents for the treatment of cerebral ischemia. Bioorg Med Chem 19:951–960

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Mareno C (2002) Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Intern 8:121–137

    Google Scholar 

  • Santocono M, Zurria M, Berrettini M, Fedeli D, Falcioni G (2006) Influence of astaxanthin, zeaxanthin and lutein on DNA damage and repair in UVA-irradiated cells. J Photochem Photobiol B-Biol 85:205–215

    Article  CAS  Google Scholar 

  • Sartor V, Henderson PT, Schuster GB (1999) Radical cation transport and reaction in RNA/DNA hybrid duplexes: effect of global structure on reactivity. J Am Chem Soc 121:11027–11033

    Article  CAS  Google Scholar 

  • Satue-Gracia M, Heinonen M, Frankel EN (1997) Antocyanins as antioxidants on human low-density lipoproteins and lecithin-liposome systems. J Agric Food Chem 45:3362–3367

    Article  CAS  Google Scholar 

  • Schleisier K, Harwat M, Bohm V, Bitsch R (2002) Assessment of antioxidant activity by using different in vitro methods. Free Radical Res 36:177–187

    Article  CAS  Google Scholar 

  • Schreck R, Baeuerle PA (1994) Assessing oxygen radicals as mediators in activation of inducible eukaryotic transcription factor NF-KB. Method Enzymol 234:151–163

    Article  CAS  Google Scholar 

  • Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FEBS Lett 10:709–720

    CAS  Google Scholar 

  • Şentürk M, Gülçin İ, Beydemir Ş, Küfrevioğlu Öİ, Supuran CT (2011) In vitro inhibition of human carbonic anhydrase I and II isozymes with natural phenolic compounds. Chem Biol Drug Des 77:494–499

    Article  PubMed  CAS  Google Scholar 

  • Şerbetçi Tohma H, Gülçin İ (2010) Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). Int J Food Propert 13:657–671

    Article  CAS  Google Scholar 

  • Shahidi F, Janitha PK, Wanasundara PD (1992) Phenolic antioxidants. Crit Rev Food Sci Nut 32:67–103

    Article  CAS  Google Scholar 

  • Sherwin ER (1972) Antioxidants for food fats and oils. J Am Oil Chem Soc 49:468–472

    Article  CAS  Google Scholar 

  • Sherwin ER (1990) In: Branen AL, Davidson PM, Salminen S (eds) Food additives, Marvel Dekker Inc., New York, pp 139–193

  • Siah CW, Trinder D, Olynyk JK (2005) Iron overload. Clin Chim Acta 358:24–36

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31–39

    Article  Google Scholar 

  • Sies H (1993) Strategies of antioxidant defence. Eur J Biochem 215:213–219

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    PubMed  CAS  Google Scholar 

  • Sies H, Stahl W (1995) Vitamins E and C, β-carotene, and other carotenoids as antioxidants. Am J Clin Nut 62:1315–1321

    Google Scholar 

  • Simic MG (1981) Free radical mechanism of autoxidation process. J Chem Educ 58:125–131

    Article  CAS  Google Scholar 

  • Simic MG, Jovanovic SV (1994) Inactivation of oxygen radicals by dietary phenolic compounds in anticarcinogenesis. In: Ho CT, Osawa T, Huang MT, Rosen RT (eds) Food phytochemicals for cancer prevention. American Chemical Society, Washington, DC

    Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Soares JR, Dins TCP, Cunha AP, Ameida LM (1997) Antioxidant activity of some extracts of Thymus zygis. Free Radical Res 26:469–478

    Article  CAS  Google Scholar 

  • Somogyi A, Rosta K, Pusztai P, Tulassay Z, Nagy G (2007) Antioxidant measurements. Physiol Meas 28:R41–R55

    Article  PubMed  Google Scholar 

  • Song FL, Gan RY, Zhang Y, Xiao Q, Kuang L, Li HB (2010) Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int J Mol Sci 11:2362–2372

    Article  PubMed  CAS  Google Scholar 

  • Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41:753–758

    Article  PubMed  CAS  Google Scholar 

  • St Angelo AJ (1996) Lipid oxidation in foods. Crit Rev Food Sci Nutr 36:175–224

    Article  PubMed  CAS  Google Scholar 

  • Stahl W, Sies H (1993) Physical quenching of singlet-oxygen and cis-trans isomerization of carotenoids. Ann NY Acad Sci 691:10–19

    Article  PubMed  CAS  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351

    Article  CAS  Google Scholar 

  • Stasko A, Brezova V, Biskupic S, Misik V (2007) The potential pitfalls of using 1, 1-diphenyl-2-picrylhydrazyl to characterize antioxidants in mixed water solvents. Free Radical Res 41:379–390

    Article  CAS  Google Scholar 

  • Stryer L (1995) Biochemistry, 4th edn. W.H. Freeman and Company, p 732

  • Susan D, Arnum V (1998) Vitamin A in Kirk-Othmer encyclopedia of chemical technology. Wiley, New York, pp 99–107

    Google Scholar 

  • Takahama U (1984) Hydrogen peroxide dependent oxidation of quercetin by intact spinach chloroplasts. Plant Physiol 74:852–857

    Article  PubMed  CAS  Google Scholar 

  • Takahama U (1985) Inhibition of lipoxygenase-dependent lipid peroxidation by quercetin: mechanism of antioxidative function. Phytochemistry 24:1443–1446

    Article  CAS  Google Scholar 

  • Talaz O, Gülçin İ, Göksu S, Saracoglu N (2009) Antioxidant activity of 5, 10-dihydroindeno[1, 2-b]indoles containing substituents on dihydroindeno part. Bioorg Med Chem 17:6583–6589

    Article  PubMed  CAS  Google Scholar 

  • Tanizawa H, Ohkawa Y, Takino Y, Ueno A, Kageyama T, Hara S (1992) Studies on natural antioxidants in citrus species. I. Determination of antioxidant activities of citrus fruits. Chem Pharm Bull 40:1940–1942

    Article  PubMed  CAS  Google Scholar 

  • Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–R444

    Article  PubMed  CAS  Google Scholar 

  • Thompson D, Moldeus P (1988) Cytotoxicity of butylated hydroxyanisole and butylated hydroxytoluene in isolated rat hepatocytes. Biochem Pharmacol 37:2201–2207

    Article  PubMed  CAS  Google Scholar 

  • Timmermann TV (1990) Tocopherole-antioxidative Wirkung bei Fetten und Ölen. Fat Sci Technol 92:201–206

    CAS  Google Scholar 

  • Tomiyama S, Sakai S, Nishiyama T, Yamada F (1993) Factors influencing the antioxidant activities of phenols by an ab initio study. Bull Chem Soc Jpn 66:299–304

    Article  CAS  Google Scholar 

  • Tournaire C, Croux S, Maurette MT, Beck I, Hocquaux M, Braun AM, Oliveros E (1993) Antioxidant activity of flavonoids: efficiency of singlet oxygen (1Δg) quenching. J Photochem Photobiol B-Biol 19:205–215

    Article  CAS  Google Scholar 

  • Tütem E, Apak R, Baykut F (1991) Spectrophotometric determination of trace amounts of copper(I) and reducing agents with neocuproine in the presence of copper(II). Analyst 116:89–94

    Article  Google Scholar 

  • Ullen H, Augustsson K, Gustavsson C, Steineck G (1997) Supplementary iron intake and risk of cancer: reversed causality? Cancer Lett 114:215–216

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela AB, Nieto SK (1996) Synthetic and natural antioxidants: food quality protectors. Grasas y Aceites 47:186–196

    Article  Google Scholar 

  • Valko M, Rhodes CJ, Moncola J, Izakovic M, Mazura M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Int 160:1–10

    Article  CAS  Google Scholar 

  • Valkonen M, Kuusi T (1997) Spectrophotometric assay for total peroxyl radical-trapping antioxidant potential in human serum. J Lipid Res 38:823–833

    PubMed  CAS  Google Scholar 

  • van Acker SABE, van den Berg DZ, Tromp MNJL, Griffoen DH, van Bennekom WP, van der Vijgh WJF, Bast A (1996) Structural aspects of antioxidant activity of flavonoids. Free Radical Biol Med 20:331–342

    Article  Google Scholar 

  • Van den Berg R, Haenen GRMM, Van den Berg H, Bast A (1999) Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66:511–517

    Article  Google Scholar 

  • Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  • Vianello R, Maksic ZB (2006) Triadic analysis of substituent effects-gas-phase acidity of para-substituted phenols. Tetrahedron 62:3402–3411

    Article  CAS  Google Scholar 

  • Vinson JA, Su XH, Zubik L, Bose P (2001) Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem 49:5315–5321

    Article  PubMed  CAS  Google Scholar 

  • Vinson J, Zubik L, Bose P, Samman N, Proch J (2005) Dried fruits: excellent in vitro and in vivo antioxidants. J Am Coll Nutr 24:44–50

    PubMed  Google Scholar 

  • Vonkruedener S, Schempp H, Elstner EF (1995) Gas chromatographic differentiation between myeloperoxidase activity and fenton-type oxidants. Free Radical Biol Med 19:141–146

    Article  CAS  Google Scholar 

  • Voss C, Sepulveda-Boza S, Zilliken FW (1992) New isoflavonoids as inhibitors of porcine 5-lipoxygenase. Biochem Pharmacol 44:157–162

    Article  PubMed  CAS  Google Scholar 

  • Vriesman MF, Haenen GRMM, Westerveld GJ, Paquay JBG, Voss HP, Bast A (1997) A method for measuring nitric oxide radical scavenging activity. Scavenging properties of sulfur-containing compounds. Pharm World Sci 19:283–286

    Article  PubMed  CAS  Google Scholar 

  • Wayner DDM, Burton GW, Ingold KU, Locke S (1985) Quantitative measurement of the total, peroxyl radical trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett 18:33–37

    Article  Google Scholar 

  • Weber P, Bendich A, Schalch W (1996) Vitamin C and human health-a review of recent data relevant to human requirements. Int J Vit Nut Res 66:19–30

    CAS  Google Scholar 

  • White PJ, Xing Y (1997) Antioxidants from cereals and legumes. In: Shahidi F (ed) Natural antioxidants, chemistry, health effects, applications. AOCS Press, Champaign, pp 25–63

    Google Scholar 

  • Whitehead TP, Thorpe GHG, Maxwell SRJ (1992) Enhanced chemiluminescent assay for antioxidant capacity in biological fluids. Anal Chim Acta 266:265–277

    Article  CAS  Google Scholar 

  • Wichi HP (1988) Enhanced tumour development by butylated hydroxyanisole (BHA) from the perspective of effect on forestomach and oesophageal squamous epithelium. Food Chem Toxicol 26:717–723

    Article  Google Scholar 

  • Wickens AP (2001) Aging and the free radical theory. Resp Physiol 128:379–391

    Article  CAS  Google Scholar 

  • Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet-state of molecular oxygen in solution-an expanded and revised compilation. J Phys Chem Ref Data 24:663–1021

    Article  CAS  Google Scholar 

  • Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radical Biol Med 36:838–849

    Article  CAS  Google Scholar 

  • Wood RJ, Ronnenberg AG (2006) In: Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ (eds) Modern nutrition in health and disease, 10th edn. Lippincott Williams and Wilkins, Philadelphia, p 248

  • Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical methods, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Gu L, Holden J, Haytowitz D, Gebhardt SE, Beecher G, Prior RL (2004) Factors in the development of a database of food total antioxidant capacity using lipophilic and hydrophilic oxygen radical absorbance capacity (ORACFL): a preliminary study of 28 foods. J Food Compos Anal 17:407–422

    Article  CAS  Google Scholar 

  • Yanishlieva N, Marinova E, Bankova V, Popov S, Marekov N (1984) Does the antioxidative activity of propolis depend on the flavonoid present? J Intern d’études et assemblée generals. Plovdiv, Bulletin de Liason 12:481–486

    Google Scholar 

  • Yu BP, Yang R (1996) Critical evaluation of the free radical theory of aging. A proposal for the oxidative stress hypothesis. Ann NY Acad Sci 786:1–11

    Article  PubMed  CAS  Google Scholar 

  • Yuan YV, Bone DE, Carrington MF (2005) Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem 91:485–494

    Article  CAS  Google Scholar 

  • Zhang X, Kim WS, Hatcher N, Potgieter K, Moroz LL, Gillette R, Sweedler JV (2002) Interfering with nitric oxide measurements. 4, 5-diaminofluorescein reacts with dehydroascorbic acid and ascorbic acid. J Biol Chem 277:48472–48478

    Article  PubMed  CAS  Google Scholar 

  • Zigman S (2000) Lens UVA photobiology. J Ocul Pharmacol Th 16:161–165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlhami Gülçin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gülçin, İ. Antioxidant activity of food constituents: an overview. Arch Toxicol 86, 345–391 (2012). https://doi.org/10.1007/s00204-011-0774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0774-2

Keywords

Navigation