Skip to main content

Advertisement

Log in

The potential of arbuscular mycorrhizal fungi in C cycling: a review

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) contribute predominantly to soil organic matter by creating a sink demand for plant C and distributing to below-ground hyphal biomass. The extra-radical hyphae along with glomalin-related soil protein significantly influence the soil carbon dynamics through their larger extent and turnover period need to discuss. The role of AMF is largely overlooked in terrestrial C cycling and climate change models despite their greater involvement in net primary productivity augmentation and further accumulation of this additional photosynthetic fixed C in the soil. However, this buffering mechanism against elevated CO2 condition to sequester extra C by AMF can be described only after considering their potential interaction with other microbes and associated mineral nutrients such as nitrogen cycling. In this article, we try to review the potential of AMF in C sequestration paving the way towards a better understanding of possible AMF mechanism by which C balance between biosphere and atmosphere can be moved forward in more positive direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ait Lahmidi N, Courty PE, Brul ED, Chatagnier O, Arnould C, Doidy J, Berta G, Lingua G, Wipf D, Bonneau L (2016) Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner. Plant Physiol Biochem 107:354–363

    CAS  PubMed  Google Scholar 

  • Antoninka A, Reich PB, Johnson NC (2011) Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol 192:200–214

    PubMed  Google Scholar 

  • Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543

    CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahn M, Rodeghiero M, Anderson-Dunn M, Dore S, Gimeno C, Drösler M, Williams M, Ammann C, Berninger F, Flechard C, Jones S, Balzarolo M, Kumar S, Newesely C, Priwitzer T, Raschi A, Siegwolf R, Susiluoto S, Tenhunen J, Wohlfahrt G, Cernusca A (2008) Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 11:1352–1367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:51–163

    Google Scholar 

  • Boldt K, Pors Y, Haupt B, Bitterlich M, Kühn C, Grimm B, Franken P (2011) Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. J Plant Physiol 168:1256–1263

    CAS  PubMed  Google Scholar 

  • Bradford MA, Fierer N, Reynolds JF (2008) Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Funct Ecol 22:964–974

    Google Scholar 

  • Bravo A, Brands M, Wewer V, Dörmann P, Harrison MJ (2017) Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol 214:1631–1645

    CAS  PubMed  Google Scholar 

  • Bravo A, York T, Pumplin N, Mueller LA, Harrison MJ (2016) Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nat Plants 2:15208

    CAS  PubMed  Google Scholar 

  • Casieri L, Lahmidi NA, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A (2013) Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23:597–625

    CAS  PubMed  Google Scholar 

  • Chen LQ (2014) SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol 201:1150–1155

    CAS  PubMed  Google Scholar 

  • Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087

    CAS  PubMed  Google Scholar 

  • Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536

    CAS  PubMed  Google Scholar 

  • Curaqueo G, Acevedo Hinojosa E, Cornejo P, Seguel A, Rubio R, Borie F (2010) Tillage effect on soil organic matter mycorrhizal hyphae and aggregates in a mediterranean agroecosystem. J Plant Nutr Soil Sci 12:21

    Google Scholar 

  • De Vries FT, Bååth E, Kuyper TW, Bloem J (2009) High turnover of fungal hyphae in incubation experiments FEMS. Microbiol Ecol 67:389–396

    Google Scholar 

  • Delaux PM, Varala K, Edger PP, Coruzzi GM, Pires JC, Ané JM (2014) Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 10(7):e1004487. https://doi.org/10.1371/journal.pgen.1004487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson S, Smith FA, Smith SE (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza 17:375–393

    CAS  PubMed  Google Scholar 

  • Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D (2012a) Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci 17:413–422

    CAS  PubMed  Google Scholar 

  • Doidy J, van Tuinen D, Lamotte O, Corneillat M, Alcaraz G, Wipf D (2012b) The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi. Mol Plant 5:1346–1358

    CAS  PubMed  Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, van Veen JA, Kowalchuk GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci 107:10938–10942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496

    Google Scholar 

  • Eom AH, Hartnett DC, Wilson GWT, Figge DAH (1999) The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am Midl Nat 142:55–70

    Google Scholar 

  • Fatichi S, Leuzinger S, Körner C (2014) Moving beyond photosynthesis: from carbon source to sink-driven vegetation modelling. New Phytol 201:1086–1095

    CAS  PubMed  Google Scholar 

  • Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Change Biol 21:2082–2094

    Google Scholar 

  • Fitter AH, Heinemeyer A, Husband R, Olsen E, Ridgway KP, Staddon PL (2004) Global environmental change and the biology of arbuscular mycorrhizas: gaps and challenges. Can J Bot 82:1133–1139

    Google Scholar 

  • Frey B, Vilariño A, SchÜepp H, Arines J (1994) Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol Biochem 26:711–717

    CAS  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Google Scholar 

  • Fujiyoshi M, Nakatsubo T, Ogura S, Horikoshi T (2000) Estimation of mycelial biomass of arbuscular mycorrhizal fungi associated with the annual legume Kummerowia striata by ergosterol analysis. Ecol Res 15:121–131

    CAS  Google Scholar 

  • Gallaud I (1905) Études sur les mycorrhizes endotrophes. Rev Génér Bot 17:5–48

    Google Scholar 

  • Garcia K, Doidy J, Zimmermann S, Wipf D, Courty PE (2016) Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci 21:937–950

    CAS  PubMed  Google Scholar 

  • Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528

    CAS  PubMed  Google Scholar 

  • Gavito ME, Jakobsen I, Mikkelsen TN, Mora F (2019) Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength. New Phytol 223:896–907

    CAS  PubMed  Google Scholar 

  • Giesemann P, Rasmussen HN, Liebel HT, Gebauer G (2020) Discreet heterotrophs: green plants that receive fungal carbon through Paris-type arbuscular mycorrhiza. New Phytol. https://doi.org/10.1111/nph.16367

    Article  PubMed  Google Scholar 

  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366

    CAS  Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24

    CAS  Google Scholar 

  • Gomes SIF, Merckx VSFT, Kehl J, Gebauer G (2020) Mycoheterotrophic plants living on arbuscular mycorrhizal fungi are generally enriched in 13C, 15N, and 2H isotopes. J Ecol. https://doi.org/10.1111/1365-2745.13381

    Article  Google Scholar 

  • Goto BT, Silva GA, Assis DMA, Silva DKA, Souza RG, Ferreira ACA, Jobim K, Mello CMA, Vieira HEE, Maia LC, Oehl F (2012) Intraornatosporaceae: (Gigasporales), a new family with two new genera and two new species. Mycotaxon 119:117–132

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen, transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    CAS  PubMed  Google Scholar 

  • Graham JH (2000) Assessing cost of arbuscularmycorrhizal symbiosis in agroecosystems. In: Podila GK, Douds DD Jr (eds) Current advances in mycorrhizal research. APS Press, St Paul, pp 127–140

    Google Scholar 

  • Gutjahr C, Novero M, Guether M, Montanari O, Udvardi M, Bonfante P (2009) Presymbiotic factors g released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytol 183:53–61

    CAS  PubMed  Google Scholar 

  • Gutjahr C, Novero M, Welham T, Wang T, Bonfante P (2011) Root starch accumulation in response to arbuscular mycorrhizal colonization differs among Lotus japonicus starch mutants. Planta 234:639–646

    CAS  PubMed  Google Scholar 

  • Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–920

    CAS  PubMed  Google Scholar 

  • Harris D, Pacovsky RS, Paul EA (1985) Carbon economy of soybean-rhizobium-glomus associations. New Phytol 101:427–440

    CAS  PubMed  Google Scholar 

  • Harris N, Brown S, Hagen S, Baccini A, Houghton R (2012) Progress toward a consensus on carbon emissions from tropical deforestation. Meridian Institute, Washington, DC

    Google Scholar 

  • Hartnett DC, Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187–1195

    Google Scholar 

  • Hartnett DC, Wilson GWT (2002) The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Diversity and integration in mycorrhizas. Springer Netherlands, Dordrecht, pp 319–331

    Google Scholar 

  • Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob Change Biol 14:1181–1190

    Google Scholar 

  • Heinemeyer A, Ineson P, Ostle N, Fitter AH (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol 171:159–170

    CAS  PubMed  Google Scholar 

  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ho I, Trappe JM (1973) Translocation of 14C from Festuca plants to their endomycorrhizal fungi. Nature 224:30–31

    Google Scholar 

  • Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with below-ground allocation in culture studies. Ecology 87:563–569

    PubMed  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    CAS  PubMed  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    PubMed  Google Scholar 

  • Imhof S, Massicotte HB, Melville LH, Peterson RL (2013) Subterranean morphology and mycorrhizal structures. In: Merckx VSFT (ed) Mycoheterotrophy. The biology of plants living on fungi. Springer, New York, pp 157–214

    Google Scholar 

  • Intergovernmental Panel on Climate Change [IPCC] (2014) in Climate Change 2014: Synthesis Report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva. https://doi.org/10.1017/CBO9781107415416

  • Ivanov S, Harrison MJ (2014) A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula. Plant J 80:1151–1163

    CAS  PubMed  Google Scholar 

  • Jakobsen I (1999) Transport of phosphorus and carbon in arbuscular mycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin, pp 305–332

    Google Scholar 

  • Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1175

    CAS  PubMed  Google Scholar 

  • Johnson NC, Gehring CA (2007) Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In: The Rhizosphere. Academic Press, Cambridge, pp 73–100

  • Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant Acyl-ACP thioesterases. Plant Cell 7:359–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabir Z, Koide RT (2002) Effect of autumn and winter mycorrhizal cover crops on soil properties, nutrient uptake and yield of sweet corn in Pennsylvania, USA. Plant Soil 238:205–215

    CAS  Google Scholar 

  • Kanters C, Anderson I, Johnson D (2015) Chewing up the wood-wide web: selective grazing on ectomycorrhizal fungi by collembola. Forests 6:2560–2570

    Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    CAS  Google Scholar 

  • Kinden DA, Brown MF (1975) Electron microscopy of vesicular–arbuscular mycorrhizae of yellow poplar. II Intracellular hyphae and vesicles. Can J Microbiol 21:1768–1780

    CAS  PubMed  Google Scholar 

  • Klironomos JN, Allen MF, Rillig MC, Piotrowski J, Makvandi-Nejad S, Wolfe BE, Powell JR (2005) Abrupt rise in atmospheric CO2 overestimates community response in a model plant–soil system. Nature 433:621–624

    CAS  PubMed  Google Scholar 

  • Klironomos JN, Ursic M, Rillig M, Allen MF (1998) Interspecific differences in the response of arbuscular mycorrhizal fungi to Artemisia tridentata grown under elevated atmospheric CO2. New Phytol 138:599–605

    Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytol 116:637–645

    CAS  Google Scholar 

  • Kowalchuk GA (2012) Bad news for soil carbon sequestration. Science 337:1049–1050

    CAS  PubMed  Google Scholar 

  • Kubiske ME, Godbold DL (2001) Influence of CO2 on the growth and function of roots and root systems. The impact of carbon dioxide and other greenhouse gases on forest ecosystems. CABI, Wallingford, pp 147–191

    Google Scholar 

  • Kytoviita MM, Ruotsalainen AD (2007) Mycorrhizal benefit in two low arctic herbs increases with increasing temperature. Am J Bot 94:1309–1315

    PubMed  Google Scholar 

  • Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372

    CAS  PubMed  Google Scholar 

  • Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312

    Google Scholar 

  • Le Quere C, Andrew RM, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers PA, Korsbakken JI, Peters GP, Canadell JG, Arneth A (2018) Global carbon budget. Earth Syst Sci Data 7:349–396

    Google Scholar 

  • Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    PubMed  Google Scholar 

  • Leigh J, Fitter AH, Hodge A (2011) Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria. FEMS Microbiol Ecol 76:428–438

    CAS  PubMed  Google Scholar 

  • Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T (2005) Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol 139:329–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovelock CE, Wright SF, Clark DA, Ruess RW (2004) Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J Ecol 92:278–287

    CAS  Google Scholar 

  • Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178

    CAS  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    CAS  PubMed  Google Scholar 

  • Manck-Götzenberger J, Requena N (2016) Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci 7:487

    PubMed  PubMed Central  Google Scholar 

  • Maraun M, Martens H, Migge S, Theenhaus A, Scheu S (2003) Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39:85–95

    Google Scholar 

  • Marinho F, Silva GA, Ferreira ACA, Veras JSN, Sousa NMF, Goto BT, Maia LC, Oehl F (2014) Bulbospora minima, a new genus and a new species from semi-arid Northeast Brazil. Sydowia 66:313–323

    Google Scholar 

  • Marler MJ, Zabinski CA, Callaway RM (1999) Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80:1180–1186

    Google Scholar 

  • McHugh TA, Schwartz E (2015) Changes in plant community composition and reduced precipitation have limited effects on the structure of soil bacterial and fungal communities present in a semiarid grassland. Plant Soil 388:175–186

    CAS  Google Scholar 

  • McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548

    PubMed  Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247

    Google Scholar 

  • Merckx V, Stöckel M, Fleischmann A, Bruns TD, Gebauer G (2010) 15N and 13C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. New Phytol 188:590–596

    CAS  PubMed  Google Scholar 

  • Merckx VSFT, Freudenstein JV, Kissling J, Christenhusz MJM, Stotler RE, Crandall-Stotler B, Wickett N, Rudall PJ, Maas-van de Kamer H, Maas PJM (2013) Taxonomy and classification. In: Merckx VSFT (ed) Mycoheterotrophy. The biology of plants living on fungi. Springer, New York, pp 19–102

    Google Scholar 

  • Miller RM, Jastrow JD, Reinhardt DR (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    CAS  PubMed  Google Scholar 

  • Mohammadi K, Heidari G, Sohrabi Y (2011) Soil management, microorganisms and organic matter interactions: A review cultivars differing in salt tolerance view project soil enzymes and microbial biomass view project. Afr J Biotechnol 10:19840–19849

    CAS  Google Scholar 

  • Mohan JE, Cowden CC, Baas P, Dawadi A, Frankson PT, Helmick K, Hughes E, Khan S, Lang A, Machmuller M, Taylor M (2014) Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol 10:3–19

    Google Scholar 

  • Moyano FE, Kutsch WL, Schulze ED (2007) Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biol Biochem 39:843–853

    CAS  Google Scholar 

  • Ngosong C, Gabriel E, Ruess L (2014) Collembola grazing on arbuscular mycorrhiza fungi modulates nutrient allocation in plants. Pedobiologia 57:171–179

    Google Scholar 

  • Norby RJ, Jackson RB (2000) Root dynamics and global change: seeking an ecosystem perspective. New Phytol 147:3–12

    CAS  Google Scholar 

  • Nottingham AT, Turner BL, Stott AW, Tanner EVJ (2015) Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biol Biochem 80:26–33

    CAS  Google Scholar 

  • Oehl F, Castro IS, Palenzuela J, Silva GA (2015) Palaeospora spainii, a new arbuscularmycorrhizal fungus from Swiss agricultural soils. Nova Hedwigia 101:89–101

    Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    CAS  Google Scholar 

  • Olsrud M, Carlsson BÅ, Svensson BM, Michelsen A, Melillo JM (2010) Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory. Glob Change Biol 16:1820–1829

    Google Scholar 

  • Olsson P, Thingstrup I, Jakobsen I, Bååth E (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887

    CAS  Google Scholar 

  • Olsson PA, Wilhelmsson P (2000) The growth of external AM fungal mycelium in sand dunes and in experimental systems. Plant Soil 226:161–169

    CAS  Google Scholar 

  • Pachauri RK, Reisinger A (2007) Climate Change 2007: Synthesis Report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC. Cambridge University Press, Cambridge

  • Park HJ, Floss DS, Levesque-Tremblay V, Bravo A, Harrison MJ (2015) Hyphal branching during arbuscule development requires reduced arbuscular mycorrhiza. Plant Physiol 169:2774–2788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nat Rev Microbiol 6:763–775

    CAS  PubMed  Google Scholar 

  • Pfeffer PE, Douds DD Jr, Becard DD, Shachar-Hill G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120:587–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfisterer AB, Schmid B (2002) Diversity dependent production can decrease the stability of ecosystem functioning. Nature 416:84–86

    CAS  PubMed  Google Scholar 

  • Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl L, Floss DS, Harrison MJ, Parniske M, Gutjahr C (2016) A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr Biol 26:987–998

    CAS  PubMed  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils. Biogeochemistry 101:133–149

    CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Google Scholar 

  • Rillig MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299

    CAS  Google Scholar 

  • Rillig MC, Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    CAS  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    CAS  Google Scholar 

  • Ruess L, Garcia Zapata E, Dighton J (2000) Food preferences of a fungal-feeding Aphelenchoides species. Nematology 2:223–230

    Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271

    CAS  Google Scholar 

  • Scharlemann JP, Tanner EV, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5:81–91

    CAS  Google Scholar 

  • Schindler FV, Mercer EJ, Rice JA (2007) Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol Biochem 39:320–329

    CAS  Google Scholar 

  • Schubert A, Allara P, Morte A (2004) Cleavage of sucrose in roots of soybean (Glycine max) colonized by an arbuscular mycorrhizal fungus. New Phytol 161:495–501

    CAS  PubMed  Google Scholar 

  • Schüßler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    PubMed  Google Scholar 

  • Schüßler A, Martin H, Cohen D, Fitz M, Wipf D (2007) Arbuscular mycorrhiza: studies on the geosiphon symbiosis lead to the characterization of the first glomeromycotan sugar transporter. Plant Signal Behav 2:431–434

    PubMed  PubMed Central  Google Scholar 

  • Schweiger R, Baier MC, Müller C (2014) Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbionts and are only partly driven by improved phosphorus uptake. Mol Plant Microbe Interact 27:1403–1412

    PubMed  Google Scholar 

  • Smith FA, Smith SE (1997) Tansley Review No. 96. Structural diversity in (vesicular)—arbuscular mycorrhizal symbioses. New Phytol 137:373–388

    PubMed  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39:221–244

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San Diego

    Google Scholar 

  • Solaiman MD, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radio respirometry. New Phytol 136:533–538

    CAS  Google Scholar 

  • Solaiman ZM (2014) Contribution of arbuscular mycorrhizal fungi to soil carbon sequestration. Springer, Berlin, pp 287–296

    Google Scholar 

  • Srimathi PL, Kumutha K, Arthee R, Pandiyarajan P (2014) Identification of Arbuscular mycorrhizal multiplicity in the saline-sodic soils. Int J Agric Biol Eng 7:56–67

    CAS  Google Scholar 

  • Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300:1138–1140

    CAS  PubMed  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, Courcelles VDR, Singh K, Wheeler I (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agr Ecosyst Environ 164:80–99

    CAS  Google Scholar 

  • Subramanian KS, Bharathi C, Jegan A (2008) Response of maize to mycorrhizal colonization at varying levels of zinc and phosphorus. Biol Fertil Soils 45:133–144

    CAS  Google Scholar 

  • Subramanian KS, Vivek PN, Balakrishnan N, Nandakumar NB, Rajkishore SK (2019) Effects of arbuscular mycorrhizal fungus Rhizoglomus intraradices on active and passive pools of carbon in long-term soil fertility gradients of maize based cropping system. Arch Agron Soil Sci 65:549–565

    CAS  Google Scholar 

  • Tome E, Tagliavini M, Scandellari F (2015) Recently fixed carbon allocation in strawberry plants and concurrent inorganic nitrogen uptake through arbuscular mycorrhizal fungi. J Plant Physiol 179:83–89

    CAS  PubMed  Google Scholar 

  • Trepanier M, Becard G, Moutoglis P, Willemot C, Gagne S, Avis TJ, Rioux JA (2005) Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71:5341–5347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    CAS  Google Scholar 

  • Treseder KK, Cross A (2006) Global distributions of arbuscular mycorrhizal fungi. Ecos 9:305–316

    Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266

    CAS  Google Scholar 

  • Treseder KK (2016) Model behavior of arbuscular mycorrhizal fungi: predicting soil carbon dynamics under climate change. Botany 94:417–423

    CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738

    Google Scholar 

  • Van Wijk MT, Clemmensen KE, Shaver GR, Williams M, Callaghan TV, Chapin FS III, Cornelissen JH, Gough L, Hobbie SE, Jonasson S, Lee JA (2004) Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change. Glob Change Biol 10:105–123

    Google Scholar 

  • Verbruggen E, Jansa J, Hammer EC, Rillig MC (2016) Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil. J Ecol 104:261–269

    CAS  Google Scholar 

  • Verbruggen E, Kiers ET, Bakelaar PN, Röling WF, van der Heijden MG (2012) Provision of contrasting ecosystem services by soil communities from different agricultural fields. Plant Soil 350:43–55

    CAS  Google Scholar 

  • Verbruggen E, Röling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    CAS  PubMed  Google Scholar 

  • Vicca S, Zavalloni C, Fu YS, Voets L, Dupré de Boulois H, Declerck S, Ceulemans R, Nijs I, Janssens IA (2009) Arbuscular Mycorrhizal fungi may mitigate the influence of a joint rise of temperature and atmospheric CO2 on soil respiration in grasslands. Int J Ecol 2009:1–10

    Google Scholar 

  • Violi HA, Barrientos-Priego AF, Wright SF, Escamilla-Prado E, Morton JB, Menge JA, Lovatt CJ (2008) Disturbance changes arbuscular mycorrhizal fungal phenology and soil glomalin concentrations but not fungal spore composition in montane rainforests in Veracruz and Chiapas, Mexico. For Ecol Manag 254:276–290

    Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Baath E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760

    CAS  PubMed  Google Scholar 

  • Walley FL, Gillespie AW, Adetona AB, Germida JJ, Farrell RE (2014) Manipulation of rhizosphere organisms to enhance glomalin production and C sequestration: pitfalls and promises. Can J Plant Sci 94:1025–1032

    CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    CAS  PubMed  Google Scholar 

  • Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd GED (2012) A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr Biol 22:2242–2246

    CAS  PubMed  Google Scholar 

  • Wang Q, Wang W, He X, Zhang W, Song K, Han S (2015) Role and variation of the amount and composition of glomalin in soil properties in farmland and adjacent plantations with reference to a primary forest in North-Eastern China. PLoS ONE 10:10

    Google Scholar 

  • Wang W, Zhong Z, Wang Q, Wang H, Fu Y, He X (2017) Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles. Sci Rep 7:13003

    PubMed  PubMed Central  Google Scholar 

  • Wang ZG, Bi YL, Jiang B, Zhakypbek Y, Peng SP, Liu WW, Liu H (2016) Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest. China Sci Rep 6:34336

    CAS  PubMed  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Wewer V, Brands M, Dörmann P (2014) Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Plant J 79:398–412

    CAS  PubMed  Google Scholar 

  • Willis A, Rodrigues BF, Harris C (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    PubMed  Google Scholar 

  • Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–1142

    CAS  PubMed  Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    CAS  Google Scholar 

  • Wright SF, Starr JL, Paltineanu IC (1999) Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci Soc Am J 63:1825

    CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    CAS  Google Scholar 

  • Wright SF, Upadhyaya A, Buyer JS (1998) Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biol Biochem 30:1853–1857

    CAS  Google Scholar 

  • Wu H, Lai C, Zeng G, Liang J, Chen J, Xu J, Dai J, Li X, Liu J, Chen M, Lu L, Hu L, Wan J (2017) The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Crit Rev Biotechnol 37:754–764

    CAS  PubMed  Google Scholar 

  • Xu M, Li X, Cai X, Li X, Christie P, Zhang J (2017) Land use alters arbuscular mycorrhizal fungal communities and their potential role in carbon sequestration on the Tibetan Plateau. Sci Rep 7:3067

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, He C, Huang L, Ban Y, Tang M (2017) The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE 12:8

    Google Scholar 

  • Zhang J, Tang X, Zhong S, Yin G, Gao Y, He X (2017) Recalcitrant carbon components in glomalin-related soil protein facilitate soil organic carbon preservation in tropical forests. Sci Rep 7:2391

    PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YG, Michael Miller R (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends Plant Sci 8:407–409

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Parihar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No studies with humans/animals have been performed by any of the authors for the purpose of this review article.

Informed consent

Informed consent was taken from all the authors.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parihar, M., Rakshit, A., Meena, V.S. et al. The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch Microbiol 202, 1581–1596 (2020). https://doi.org/10.1007/s00203-020-01915-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01915-x

Keywords

Navigation