Skip to main content
Log in

Mn(II) oxidation in Pseudomonas putida GB-1 is influenced by flagella synthesis and surface substrate

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacterially mediated manganese(II) oxidation greatly affects the biogeochemical cycling of Mn and other elements. One species of bacteria that are capable of Mn(II) oxidation is the gamma-proteobacterium Pseudomonas putida GB-1. In this organism, Mn(II) oxidation begins in stationary phase on the outer surface of the cell, forming a layer of insoluble Mn(III,IV) oxides. A random transposon mutagenesis screen isolated 12 mutant strains of P. putida GB-1 that exhibited increased Mn(II) oxidation on solid media relative to wild type. In 8 out of the 12 strains, the transposon had inserted into a putative flagellar gene. Those 8 strains each had motility defects, thus the disrupted genes are part of the P. putida GB-1 flagellar regulon. The flagellar genes identified include putative structural components (FliC, FliD, FlgE, and FlgL) and regulatory proteins (FlgM and FleN). Deletion of either the FleN gene (fleN) or the overlapping gene fliA resulted in increased Mn(II) oxidation, while in-frame deletion of fliF, which encodes an essential component of the basal body, did not. In liquid media, the flagellar mutants exhibited delayed Mn(II) oxidation relative to wild type. These results suggest that bacterial Mn(II) oxidation is regulated in part by flagellar-mediated responses to the surface substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson C, Johnson H, Caputo N, Davis R, Torpey J, Tebo B (2009) Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimonas manganoxydans” strain SI85–9A1 and Erythrobacter sp. strain SD-21. Appl Environ Microbiol 75:4130–4138

    Article  PubMed  CAS  Google Scholar 

  • Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R (1996) Cloning and characterization of Pseudomonas aeruginosa fliF, necessary for flagellar assembly and bacterial adherence to mucin. Infect Immun 64:2130–2136

    PubMed  CAS  Google Scholar 

  • Boogerd FC, de Vrind JP (1987) Manganese oxidation by Leptothrix discophora. J Bacteriol 169:489–494

    PubMed  CAS  Google Scholar 

  • Brouwers GJ, de Vrind JP, Corstjens PL, Cornelis P, Baysse C, de Vrind-de Jong EW (1999) cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 65:1762–1768

    PubMed  CAS  Google Scholar 

  • Brown JD, Saini S, Aldridge C, Herbert J, Rao CV, Aldridge PD (2008) The rate of protein secretion dictates the temporal dynamics of flagellar gene expression. Mol Microbiol 70:924–937

    PubMed  CAS  Google Scholar 

  • Caspi R, Tebo BM, Haygood MG (1998) c-type cytochromes and manganese oxidation in Pseudomonas putida MnB1. Appl Environ Microbiol 64:3549–3555

    PubMed  CAS  Google Scholar 

  • Cianciotto NP (2005) Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13:581–588

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta N, Arora SK, Ramphal R (2000) fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa. J Bacteriol 182:357–364

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta N, Wolfgang MC, Goodman AL, Arora SK, Jyot J, Lory S, Ramphal R (2003) A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol 50:809–824

    Article  PubMed  CAS  Google Scholar 

  • de Vrind JP, de Vrind-de Jong EW, de Voogt JW, Westbroek P, Boogerd FC, Rosson RA (1986) Manganese oxidation by spores and spore coats of a marine Bacillus species. Appl Environ Microbiol 52:1096–1100

    PubMed  Google Scholar 

  • de Vrind JP, Brouwers GJ, Corstjens PL, den Dulk J, de Vrind-de Jong EW (1998) The cytochrome c maturation operon is involved in manganese oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 64:3556–3562

    PubMed  Google Scholar 

  • de Vrind J, de Groot A, Brouwers GJ, Tommassen J, de Vrind-de Jong E (2003) Identification of a novel Gsp-related pathway required for secretion of the manganese-oxidizing factor of Pseudomonas putida strain GB-1. Mol Microbiol 47:993–1006

    Article  PubMed  Google Scholar 

  • Dick GJ, Torpey JW, Beveridge TJ, Tebo BM (2008) Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. Appl Environ Microbiol 74:1527–1534

    Article  PubMed  CAS  Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    Article  PubMed  CAS  Google Scholar 

  • Francis CA, Casciotti KL, Tebo BM (2002) Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-1. Arch Microbiol 178:450–456

    Article  PubMed  CAS  Google Scholar 

  • Geszvain K, Tebo BM (2010) Identification of a two-component regulatory pathway essential for Mn(II) oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 76:1224–1231

    Article  PubMed  CAS  Google Scholar 

  • Ghiorse WC (1984) Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol 38:515–550

    Article  PubMed  CAS  Google Scholar 

  • Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86

    Article  PubMed  CAS  Google Scholar 

  • Horton RM (1997) In vitro recombination and mutagenesis of DNA. SOEing together tailor-made genes. Methods Mol Biol 67:141–149

    PubMed  CAS  Google Scholar 

  • Jung WK, Schweisfurth R (1979) Manganese oxidation by an intracellular protein of a Pseudomonas species. Z Allg Mikrobiol 19:107–115

    Article  PubMed  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Steven Hill D, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  PubMed  CAS  Google Scholar 

  • Lapouge K, Schubert M, Allain FH, Haas D (2008) Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67:241–253

    Article  PubMed  CAS  Google Scholar 

  • Larsen R, Wilson M, Guss A, Metcalf W (2002) Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol 178:193–201

    Article  PubMed  CAS  Google Scholar 

  • Learman DR, Voelker BM, Vazquez-Rodriguez AI, Hansel CM (2011) Formation of manganese oxides by bacterially generated superoxide. Nature Geosci 4:95–98

    Article  CAS  Google Scholar 

  • Markowitz VM, Kyrpides NC (2007) Comparative genome analysis in the integrated microbial genomes (IMG) system. Methods Mol Biol 395:35–56

    Article  PubMed  CAS  Google Scholar 

  • McCarter L, Hilmen M, Silverman M (1988) Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54:345–351

    Article  PubMed  CAS  Google Scholar 

  • Miyata N, Tani Y, Sakata M, Iwahori K (2007) Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104:1–8

    Article  PubMed  CAS  Google Scholar 

  • Okazaki M, Sugita T, Shimizu M, Ohode Y, Iwamoto K, de Vrind-de Jong EW, de Vrind JP, Corstjens PL (1997) Partial purification and characterization of manganese-oxidizing factors of Pseudomonas fluorescens GB-1. Appl Environ Microbiol 63:4793–4799

    PubMed  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  • Rodríguez-Herva JJ, Duque E, Molina-Henares MA et al (2010) Physiological and transcriptomic characterization of a fliA mutant of Pseudomonas putida KT2440. Environ Microbiol Rep 2:373–380

    Article  Google Scholar 

  • Spiro TG, Bargar JR, Sposito G, Tebo BM (2010) Bacteriogenic manganese oxides. Acc Chem Res 43:2–9

    Article  PubMed  CAS  Google Scholar 

  • Starnbach MN, Lory S (1992) The fliA (rpoF) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin synthesis. Mol Microbiol 6:459–469

    Article  PubMed  CAS  Google Scholar 

  • Tebo B, Bargar J, Clement B, Dick G, Murray K, Parker D, Verity R, Webb S (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328

    Article  CAS  Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428

    Article  PubMed  CAS  Google Scholar 

  • van Waasbergen LG, Hildebrand M, Tebo BM (1996) Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. J Bacteriol 178:3517–3530

    PubMed  Google Scholar 

  • Wang Q, Suzuki A, Mariconda S, Porwollik S, Harshey RM (2005) Sensing wetness: a new role for the bacterial flagellum. EMBO J 24:2034–2042

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant number MCB-0630355 from the National Science Foundation. The contents of the manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the National Science Foundation. We also thank Karen Visick for helpful advice and stimulating discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati Geszvain.

Additional information

Communicated by John Helmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geszvain, K., Yamaguchi, A., Maybee, J. et al. Mn(II) oxidation in Pseudomonas putida GB-1 is influenced by flagella synthesis and surface substrate. Arch Microbiol 193, 605–614 (2011). https://doi.org/10.1007/s00203-011-0702-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0702-0

Keywords

Navigation