Skip to main content
Log in

Lipid peroxidation in the fungus Curvularia lunata exposed to nickel

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The effect of Ni2+ on fungal growth, cellular fatty acid profile and lipid peroxidation was studied (with an emphasis on the kinetics of these processes) in the strain of filamentous fungus Curvularia lunata. In the cultures supplemented with 0.2 and 0.6 mM Ni2+ the lag phase was extended and the specific growth rate decreased, however, the maximum yield of biomass at the stationary phase reached, respectively, 97 and 27% of the control. The treatment with Ni2+ changed the proportion of 18 C atom fatty acids, with the most significant decrease in the content of linoleic acid (18:2) followed by a rise in the degree of fatty acid saturation. In the mycelia exposed to Ni2+ the levels of TBARS (lipid peroxidation products) increased and ranged between 156 and 823% over the control. The presented data reveal that the oxidative stress resulting, among others, in membrane lipid peroxidation is involved in the mechanisms of the nickel toxicity towards C. lunata and suggest that this fungus exhibits an ability to cope, to some extent, with the increased level of lipid peroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Azevedo MM, Carvalho A, Pascoal C, Rodrigues F, Cássio F (2007) Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Sci Total Environ 377:233–243

    Article  PubMed  CAS  Google Scholar 

  • Bernat P, Długoński J (2007) Tributyltin chloride interactions with fatty acids composition and degradation ability of the filamentous fungus Cunninghamella elegans. Int Biodeterior Biodegradation 60:133–136

    Article  CAS  Google Scholar 

  • Boisvert S, Joly D, Leclerc S, Govindachary S, Harnois J, Carpentier R (2007) Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. Biometals 20:879–889

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-day binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Braha B, Tintemann H, Krauss G, Ehrman J, Bärlocher F, Krauss GJ (2007) Stress response in two strains of the aquatic hyphomycete Heliscus lugdunensis after exposure to cadmium and copper ions. Biometals 20:93–105

    Article  PubMed  CAS  Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Wang YF, Huang WR, Huang YT (2003) Nickel induces oxidative stress and genotoxicity in human lymphocytes. Toxicol Appl Pharmacol 189:153–159

    Article  PubMed  CAS  Google Scholar 

  • Das KK, Buchner V (2007) Effect of nickel exposure on peripheral tissues: role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev Environ Health 22:157–173

    PubMed  CAS  Google Scholar 

  • De Luca G, Gugliotta T, Parisi G, Romano P, Geraci A, Romano O, Scuteri A, Romano L (2007) Effects of nickel on human and fish red blood cells. Biosci Rep 27:265–273

    Article  PubMed  CAS  Google Scholar 

  • Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42:35–56

    Article  PubMed  CAS  Google Scholar 

  • Fomina M, Ritz K, Gadd GM (2003) Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycol Res 107:861–871

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM, Ramsay L, Crawford JW, Ritz K (2001) Nutritional influence on fungal colony growth and biomass distribution in response to toxic metals. FEMS Microbiol Lett 204:311–316

    Article  PubMed  CAS  Google Scholar 

  • Gajewska E, Skłodowska M (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20:27–36

    Article  PubMed  CAS  Google Scholar 

  • Gajewska E, Słaba M, Andrzejewska R, Skłodowska M (2006) Nickel-induced inhibition of wheat root growth is related to H2O2 production, but not to lipid peroxidation. J Plant Growth Regul 49:95–103

    CAS  Google Scholar 

  • Garcia JJ, Martínez-Ballarín E, Millán-Plano S, Allué JL, Albendea C, Fuentes L, Escanero JF (2005) Effects of trace elements on membrane fluidity. J Trace Elem Med Biol 19:19–22

    Article  PubMed  CAS  Google Scholar 

  • Howlett NG, Avery SV (1997a) Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:539–545

    Article  PubMed  CAS  Google Scholar 

  • Howlett NG, Avery SV (1997b) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976

    PubMed  CAS  Google Scholar 

  • Joho M, Inouhe M, Tohoyama H, Murayama T (1995) Nickel resistance mechanisms in yeasts and other fungi. J Ind Microbiol 14:164–168

    Article  PubMed  CAS  Google Scholar 

  • Kasprzak KS, Sunderman FW, Salnikow K (2003) Nickel carcinogenesis. Mutat Res 533:67–97

    PubMed  CAS  Google Scholar 

  • Krumova EZ, Pashova SB, Dolashka-Angelova PA, Stefanova T, Angelova MB (2009) Biomarkers of oxidative stress in the fungal strain Humicola lutea under copper exposure. Process Biochem 44:288–295

    Article  CAS  Google Scholar 

  • Lu H, Shi X, Costa M, Huang Ch (2005) Carcinogenic effect of nickel compounds. Mol Cell Biochem 279:45–67

    Article  PubMed  CAS  Google Scholar 

  • Paraszkiewicz K, Kanwal A, Długoński J (2002) Emulsifier production by steroid transforming filamentous fungus Curvularia lunata. Growth and product characterization. J Biotechnol 92:287–294

    Article  PubMed  CAS  Google Scholar 

  • Paraszkiewicz K, Frycie A, Słaba M, Długoński J (2007) Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence. Biometals 20:797–805

    Article  PubMed  CAS  Google Scholar 

  • Paraszkiewicz K, Bernat P, Długoński J (2009) Effect of nickel, copper and zinc on emulsifier production and saturation of cellular fatty acids in filamentous fungus Curvularia lunata. Int Biodeterior Biodegradation 63:100–105

    Article  CAS  Google Scholar 

  • Prasad SM, Dwivedi R, Zeeshan M (2005) Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica 43:177–185

    Article  CAS  Google Scholar 

  • Ruess L, Häggblom MM, García Zapata EJ, Dighton J (2002) Fatty acids of fungi and nematodes—possible biomarkers in the soil food chain? Soil Biol Biochem 34:745–756

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Tuszynska S (2006) Ni+2 induces changes in the morphology of vacuoles, mitochondria and microtubules in Paxillus involutus cells. New Phytol 169:819–828

    Article  PubMed  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  PubMed  CAS  Google Scholar 

  • Vesentini D, Dickinson DJ, Murphy RJ (2007) The protective role of the extracellular mucilaginous material (ECMM) from two wood-rotting basidiomycetes against copper toxicity. Int Biodeterior Biodegradation 60:1–7

    Article  CAS  Google Scholar 

  • Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15:212–216

    Article  PubMed  CAS  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Lodz, grant (No. 505/440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Długoński.

Additional information

Communicated by Axel Brakhage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paraszkiewicz, K., Bernat, P., Naliwajski, M. et al. Lipid peroxidation in the fungus Curvularia lunata exposed to nickel. Arch Microbiol 192, 135–141 (2010). https://doi.org/10.1007/s00203-009-0542-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0542-3

Keywords

Navigation