Skip to main content
Log in

Laccases and their occurrence in prokaryotes

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Laccases are copper-containing proteins that require O2 to oxidize phenols, polyphenols, aromatic amines, and different non-phenolic substrates by one-electron transfer, resulting in the formation of reactive radicals. Although their specific physiological functions are not completely understood, there are several indications that laccases are involved in the morphogenesis of microorganisms (e.g., fungal spore development, melanization) and in the formation and/or degradation of complex organic substances such as lignin or humic matter. Owing to their high relative non-specific oxidation capacity, laccases are useful biocatalysts for diverse biotechnological applications. To date, laccases have been found only in eukaryotes (fungi, plants); however, databank searches and experimental data now provide evidence for their distribution in prokaryotes. This survey shows that laccase-like enzymes occur in many gram-negative and gram-positive bacteria. Corresponding genes have been found in prokaryotes that are thought to have branched off early during evolution, e.g., the extremely thermophilic Aquifex aeolicus and the archaeon Pyrobaculum aerophilum. Phylogenetically, the enzymes are members of the multi-copper protein family that have developed from small-sized prokaryotic azurins to eukaryotic plasma proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

References

  • Adams LF, Ghiorse WC (1987) Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1. J Bacteriol 169:1279–1285

    CAS  PubMed  Google Scholar 

  • Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42

    CAS  PubMed  Google Scholar 

  • Alexandre G, Bally R, Taylor BL, Zhulin IB (1999) Loss of cytochrome oxidase activity and acquisition of resistance to quinone analogs in a laccase-positive variant of Azospirillum lipoferum. J Bacteriol 181:6730–6738

    CAS  PubMed  Google Scholar 

  • Antorini M, Herpoel-Gimbert I, Choinowski T, Sigoillot C, Asther M, Winterhalter K, Piontek K (2002). Purification, crystallization and X-ray diffraction study of fully functional laccases from two ligninolytic fungi. Biochim Biophys Acta 1594:103–114

    Google Scholar 

  • Bertrand T, Jolivalt C, Caminade E, Joly N, Mougin C, Briozzo P (2002) Purification and preliminary crystallographic study of Trametes versicolor laccase in its native form. Biol Crystallogr 58:319–321

    Article  Google Scholar 

  • Brouwers GJ, de Vrind JPM, Corstjens PLAM, Cornelis P, Baysse C, de Vrind-deJong EW (1999) cumA, a gene encoding a multicopper oxidase, is involved in Mn oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 65:1762–1768

    CAS  PubMed  Google Scholar 

  • Cha J, Cooksey DA (1991) Copper resistance in Pseudomonas syringae by periplasmic and outer membrane proteins. Proc Natl Acad Sci USA 88:8915–1919

    CAS  PubMed  Google Scholar 

  • Claus H, Filip Z (1997) The evidence of a laccase-like activity in a Bacillus sphaericus strain. Microbiol Res 152:209–215

    CAS  Google Scholar 

  • Claus H., Filip Z (1998) Degradation and transformation of aquatic humic substances by laccase-producing fungi Cladosporium cladosporioides and Polyporus versicolor. Acta Hydrochim Hydrobiol 26:180–185

    Article  CAS  Google Scholar 

  • Cullen D (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53:273–289

    CAS  PubMed  Google Scholar 

  • Dean JFD, Eriksson KEL (1994) Laccase and the deposition of lignin in vascular plants. Holzforschung 48:21–33

    CAS  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olson GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 393:353–358

    Google Scholar 

  • Diamantidis G, Effosse A, Potier P, Bally R (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32:919–927

    Article  CAS  Google Scholar 

  • Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Cat B:Environ 28:83–99

    Google Scholar 

  • Eggert C, Temp U, Dean JFD, Eriksson KEL (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148

    CAS  PubMed  Google Scholar 

  • Endo K, Hosono K, Beppu T, Ueda K (2002) A novel extracytoplasmatic phenol oxidase of Streptomyces: its possible involvement in the onset of morphogenesis. Microbiology 148:1767–1776

    CAS  PubMed  Google Scholar 

  • Faure D, Bouillant ML, Bally R (1994) Isolation of Azospirillum lipoferum 4T Tn5 mutants affected in melanization and laccase activity. Appl Environ Microbiol 60:3413–3415

    CAS  Google Scholar 

  • Faure D, Bouillant ML, Bally R (1995) Comparative study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia oryzae laccases. Appl Environ Microbiol 61:1144–1146

    CAS  Google Scholar 

  • Faure D, Bouillant ML, Jacoud C, Bally R (1996) Phenolic derivates related to lignin metabolism as substrates for Azospirillum laccase activity. Phytochemistry 42:357–360

    Article  CAS  Google Scholar 

  • Filip Z, Claus H (1995) Effects of soil minerals on the microbial formation of enzymes and their possible use in remediation of chemically polluted sites. In: Huang PM, Berthelin J, Bollag JM, McGill WB, Page AL (eds) Environmental Impacts of soil component interactions. CRC, Boca Raton, pp 407–419

  • Francis CA, Tebo BM (2001) cumA multicopper oxidase genes from diverse Mn(II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains. Appl Environ Microbiol 67:4272–4278

    Article  CAS  PubMed  Google Scholar 

  • Francis CA, Co EM, Tebo BM (2001) Enzymatic manganese(II) oxidation by a marine a-proteobacterium. Appl Environ Microbiol 67 (2001) 4024–4029

    Google Scholar 

  • Freeman JC, Nayar PG, Begley TP, Villafranca JJ (1993) Stoichiometry and spectroscopic identity of copper centers in phenoxazonine synthase: a new addition for the blue copper oxidase family. Biochemistry 32:4826–4830

    CAS  PubMed  Google Scholar 

  • Fritz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH (2002) Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci USA 99:984–989

    Article  PubMed  Google Scholar 

  • Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere : evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett 108:205–210

    Article  CAS  Google Scholar 

  • Harkin JM, Obst JR (1973) Syringaldazine: an effective reagent for detecting laccase and peroxidase in fungi. Experientia 29:381–387

    CAS  Google Scholar 

  • Hough MA, Hall JF, Kanbi LD, Hasnain SS (2001) Structure of the M148Q mutant of rusticyanin at 1.5 A: a model for the copper site of stellacyanin. Acta Cryst 57:355–360

    Article  CAS  Google Scholar 

  • Hullo MF, Moszer I, Danchin A, Martin-Verstraete I (2001) CotA of Bacillus substilis is a copper-dependent laccase. J Bacteriol 183:5426–5430

    Article  CAS  PubMed  Google Scholar 

  • Isono Y, Hoshino M (1989) Laccase-like activity of nucleoside oxidase in the presence of nucleosides. Agric Biol Chem 53:2197–2203

    CAS  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Laccase activity tests and laccase inhibitors. J Biotechnol 78:193–199

    CAS  PubMed  Google Scholar 

  • Kanbi LD, Antonyuk S, Hough MA, Hall JF, Dodd FE, Hasnain SS (2002) Crystal structures of the Met 148Leu and Ser86Asp mutants of rusticyanin from Thiobacillus ferrooxidans: insights into the structural relationship with the cupredoxins and the multi copper proteins. J Mol Biol 320:263–275

    Article  CAS  PubMed  Google Scholar 

  • Kawai S, Umezawa T, Shimada M., Higushi T (1988) Aromatic ring cleavage of 4,6-di(tert-butyl)guaiacol, a phenolic lignin model compound, by laccase of Coriolus versicolor. FEBS Lett 236:309–311

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Lorenz WW, Hoopes T, Dean JFD (2001) Oxidation of siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J Bacteriol 183:4866–4875

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Hendson M, Panopoulos NJ, Schroth MN (1994) Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small copper proteins and multicopper oxidases. J Bacteriol 176:173–188

    CAS  PubMed  Google Scholar 

  • Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuzewska A, Hofrichter M, Wesenberg D, Rogalski (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185-227

    Article  CAS  PubMed  Google Scholar 

  • Li K, Xu F, Eriksson KEL (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 65:2654–2660

    CAS  PubMed  Google Scholar 

  • Martins LO, Soares CM, Pereira MM, Teixera M, Costa T, Jones GH, Henriques AO (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277:18849–18859

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  CAS  PubMed  Google Scholar 

  • Messerschmidt A (1992) Structural studies on copper-containing plant oxidases. Biochem Soc Trans 20:364–372

    CAS  PubMed  Google Scholar 

  • Messerschmidt A, Huber R (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Eur J Biochem 187:341–352

    CAS  PubMed  Google Scholar 

  • Molitoris HP (1976) Die Laccasen des Ascomyceten Podospora anserina. Bibliotheca Mycologica 52:1–81.

    Google Scholar 

  • Nishizawa Y, Nakabayashi K, Shinagawa EJ (1995) Purification and characterization of laccase from white rot fungus Trametes sanguinea M85-2. Fermen Bioeng 80:91–93

    Article  CAS  Google Scholar 

  • Okazaki M, Sugita T, Shimizu M, Ohode Y, Iwamoto K, de Vrind-de Jong, de Vrind JPM, Corstjens PLAM (1997) Partial purification and characterization of mangenese-oxidizing factors of Pseudomonas fluorescens GB-1. Appl Environ Microbiol 63:4793–4799

    CAS  PubMed  Google Scholar 

  • Roberts Sue A, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Nat Acad Sci USA 99:2766–2771

    Article  CAS  PubMed  Google Scholar 

  • Rydén LG, Hunt LT (1993) Evolution of protein complexity: the blue copper-containing oxidases and related proteins. J Mol Evol 36:41–46

    CAS  PubMed  Google Scholar 

  • Sanchez-Amat A, Solano F (1997) A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp. shares catalytic capabilities of tyrosinases and laccases. Biochem Biophys Res Comm 240:787–792

    CAS  PubMed  Google Scholar 

  • Sanchez-Amat A, Lucas-Elio P, Ferandez E, Garcia-Borron JC, Solano F (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta 1547:104–116

    Article  CAS  PubMed  Google Scholar 

  • Schlosser D, Hofer C (2002) Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl Environ Microbiol 68:3514–3521

    Article  CAS  PubMed  Google Scholar 

  • Sjoblad RD, Bollag JM (1981) Oxidative coupling of aromatic compounds by enzymes from soil microorganisms. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, pp 113–152

  • Solano F, Lucas-Elio P, Lopez-Serranno D, Ferandez E, Sanchez-Amat A (2001) Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol Lett 16:175–181

    Article  Google Scholar 

  • Takami H, Takaki Y, Chee G (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30:3927–3935

    Article  CAS  PubMed  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    CAS  Google Scholar 

  • Van Waasbergen LG, Hildebrand M, Tebo BM (1996) Identification and characterization of a gene cluster involved in maganese oxidation by spores of a marine Bacillus sp. strain SG-1. J Bacteriol 178:3517–3530

    PubMed  Google Scholar 

  • Yaropolov AI, Skorobogat'ko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase: properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49:257–280

    CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank the editors and Helmut König (University Mainz) for constructive suggestions to improve the manuscript, and Robin Harris (University Mainz) for improving the grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Claus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claus, H. Laccases and their occurrence in prokaryotes. Arch Microbiol 179, 145–150 (2003). https://doi.org/10.1007/s00203-002-0510-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-002-0510-7

Keywords

Navigation