Skip to main content
Log in

Sideways fall-induced impact force and its effect on hip fracture risk: a review

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Osteoporotic hip fracture, mostly induced in falls among the elderly, is a major health burden over the world. The impact force applied to the hip is an important factor in determining the risk of hip fracture. However, biomechanical researches have yielded conflicting conclusions about whether the fall-induced impact force can be accurately predicted by the available models. It also has been debated whether or not the effect of impact force has been considered appropriately in hip fracture risk assessment tools. This study aimed to provide a state-of-the-art review of the available methods for predicting the impact force, investigate their strengths/limitations, and suggest further improvements in modeling of human body falling.

Methods

We divided the effective parameters on impact force to two categories: (1) the parameters that can be determined subject-specifically and (2) the parameters that may significantly vary from fall to fall for an individual and cannot be considered subject-specifically.

Results

The parameters in the first category can be investigated in human body fall experiments. Video capture of real-life falls was reported as a valuable method to investigate the parameters in the second category that significantly affect the impact force and cannot be determined in human body fall experiments.

Conclusions

The analysis of the gathered data revealed that there is a need to develop modified biomechanical models for more accurate prediction of the impact force and appropriately adopt them in hip fracture risk assessment tools in order to achieve a better precision in identifying high-risk patients.

Impact force to the hip induced in sideways falls is affected by many parameters and may remarkably vary from subject to subject

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DeGoede KM, Ashton-Miller JA, Schultz AB (2003) Fall-related upper body injuries in the older adult: a review of the biomechanical issues. J Biomech 36:1043–1053

    Article  CAS  PubMed  Google Scholar 

  2. Rivara FP, Grossman DC, Cummings P (1997) Injury prevention. N Engl J Med 337:543–548

    Article  CAS  PubMed  Google Scholar 

  3. Green C, Molony D, Fitzpatrick C, ORourke K (2010) Age-specific incidence of hip fracture in the elderly: a healthy decline. Surgeon 8:310–313

    Article  CAS  PubMed  Google Scholar 

  4. Gullberg B, Johnell O, Kanis JA (1997) World-wide projections for hip fracture. Osteoporos Int 7:407–413

    Article  CAS  PubMed  Google Scholar 

  5. Kannus P, Leiponen P, Parkkari J, Palvanen M, Jarvinen M (2006) A sideways fall and hip fracture. Bone 39:383–384

    Article  PubMed  Google Scholar 

  6. Boonen S, Autier P, Barette M, Vanderschueren D, Lips P, Haentjens P (2004) Functional outcome and quality of life following hip fracture in elderly women: a prospective controlled study. Osteoporos Int 15:87–94

    Article  PubMed  CAS  Google Scholar 

  7. Phillips S, Fox N, Jacobs J, Wright WE (1988) The direct medical costs of osteoporosis for American women aged 45 and older. Bone 9:271–279

    Article  CAS  PubMed  Google Scholar 

  8. Huddleston JM, Whitford KJ (2001) Medical care of elderly patients with hip fractures. Mayo Clin Proc 76:295–298

    Article  CAS  PubMed  Google Scholar 

  9. Greenspan SL, Myers ER, Kiel DP, Parker RA, Hayes WC, Resnick NM (1998) Fall direction, bone mineral density, and function: risk factors for hip fracture in frail nursing home elderly. Am J Med 104:539–545

    Article  CAS  PubMed  Google Scholar 

  10. Hayes WC, Piazza SJ, Zysset PK (1991) Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin N Am 29:1–18

    CAS  PubMed  Google Scholar 

  11. Myers ER, Wilson SE (1997) Biomechanics of osteoporosis and vertebral fracture. Spine 22:25S–31S

    Article  CAS  PubMed  Google Scholar 

  12. Luo Y (2015) A biomechanical sorting of clinical risk factors affecting osteoporotic hip fracture. Osteoporosis International 1-17

  13. Robinovitch SN, Hayes WC, McMahon TA (1991) Prediction of femoral impact forces in falls on the hip. ASME J Biomech Eng 113:366–374

    Article  CAS  Google Scholar 

  14. Kroonenberg AJ, Hayes WC, McMahon TA (1995) Dynamic models for sideways falls from standing height. J Biomech Eng 117:309–318

    Article  PubMed  Google Scholar 

  15. Robinovitch SN, McMahon TA, Hayes WC (1995) Force attenuation in trochanteric soft tissues during impact from a fall. J Orthop Res 13:956–962

    Article  CAS  PubMed  Google Scholar 

  16. Van den Kroonenberg AJ, Hayes WC, McMahon TA (1996) Hip impact velocities and body configurations for voluntary falls from standing height. J Biomech 29:807–811

    Article  PubMed  Google Scholar 

  17. Hayes WC, Myers ER, Robinovitch SN, Van Den Kroonenberg A, Courtney AC, McMahon TA (1996) Etiology and prevention of age-related hip fractures. Bone 18:S77–S86

    Article  Google Scholar 

  18. Robinovitch SN, Hayes WC, McMahon TA (1997) Distribution of contact force during impact to the hip. Ann Biomed Eng 25:499–508

    Article  CAS  PubMed  Google Scholar 

  19. Robinovitch SN, Hayes WC, McMahon TA (1997) Predicting the impact response of a nonlinear single-degree-of-freedom shock-absorbing system from the measured step response. J Biomech Eng 119:221–227

    Article  CAS  PubMed  Google Scholar 

  20. Sandler R, Robinovitch S (2001) An analysis of the effect of lower extremity strength on impact severity during a backward fall. J Biomech Eng 123:590–598

    Article  CAS  PubMed  Google Scholar 

  21. Robinovitch SN, Inkster L, Maurer J, Warnick B (2003) Strategies for avoiding hip impact during sideways falls. J Bone Miner Res 18:1267–1273

    Article  PubMed  Google Scholar 

  22. Robinovitch SN, Brumer R, Maurer J (2004) Effect of the squat protective response on impact velocity during backward falls. J Biomech 37:1329–1337

    Article  PubMed  Google Scholar 

  23. Feldman F, Robinovitch SN (2007) Reducing hip fracture risk during sideways falls: evidence in young adults of the protective effects of impact to the hands and stepping. J Biomech 40:2612–2618

    Article  PubMed  Google Scholar 

  24. Laing AC, Robinovitch SN (2010) Characterizing the effective stiffness of the pelvis during sideways falls on the hip. J Biomech 43:1898–1904

    Article  PubMed  Google Scholar 

  25. Levine IC, Bhan S, Laing AC (2013) The effects of body mass index and sex on impact force and effective pelvic stiffness during simulated lateral falls. Clin Biomech 28:1026–1033

    Article  Google Scholar 

  26. Choi WJ, Cripton PA, Robinovitch SN (2015) Effects of hip abductor muscle forces and knee boundary conditions on femoral neck stresses during simulated falls. Osteoporos Int 26:291–301

    Article  CAS  PubMed  Google Scholar 

  27. Nasiri M, Luo Y (2016) Study of sex differences in the association between hip fracture risk and body parameters by DXA-based biomechanical modeling. Bone 90:90–98

    Article  PubMed  Google Scholar 

  28. Laing AC, Tootoonchi I, Hulme PA, Robinovitch SN (2006) Effect of compliant flooring on impact force during falls on the hip. J Orthop Res 24:1405–1411

    Article  PubMed  Google Scholar 

  29. Bateni H, Zecevic A, McIlroy W, Maki B (2004) Resolving conflicts in task demands during balance recovery: does holding an object inhibit compensatory grasping? Exp Brain Res 157:49–58

    Article  PubMed  Google Scholar 

  30. Smith LD (1953) Hip fractures: the role of muscle contraction or intrinsic forces in the causation of fractures of the femoral neck. J Bone Joint Surg 35:367–383

    Article  PubMed  Google Scholar 

  31. Phillips J, Williams J, Melick R (1975) Prediction of the strength of the neck of femur from its radiological appearance. Biomed Eng 10:367–372

    CAS  PubMed  Google Scholar 

  32. Dalen N, Hellstrom L, Jacobson B (1976) Bone mineral content and mechanical strength of the femoral neck. Acta Orthop Scand 47:503–508

    Article  CAS  PubMed  Google Scholar 

  33. Leichter I, Margulies JY, Weinreb A, Mizrahi J, Robin GC, Conforty B, Makin M, Bloch B (1982) The relationship between bone density, mineral content, and mechanical strength in the femoral neck. Clin Orthop Relat Res 163:272–281

    Google Scholar 

  34. Mizrahi J, Margulies JY, Leichter I, Deutsch D (1984) Fracture of the human femoral neck: effect of density of the cancellous core. J Biomed Eng 6:56–62

    Article  CAS  PubMed  Google Scholar 

  35. Alho A, Husby T, Hoiseth A (1988) Bone mineral content and mechanical strength an ex vivo study on human femora at autopsy. Clin Orthop Relat Res 227:292–297

    CAS  PubMed  Google Scholar 

  36. Esses S, Lotz J, Hayes W (1989) Biomechanical properties of the proximal femur determined in vitro by single-energy quantitative computed tomography. J Bone Miner Res 4:715–722

    Article  CAS  PubMed  Google Scholar 

  37. Lotz JC, Hayes WC (1990) The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg 72:689–700

    Article  CAS  PubMed  Google Scholar 

  38. Courtney AC, Wachtel EF, Myers ER, Hayes WC (1994) Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 55:53–58

    Article  CAS  PubMed  Google Scholar 

  39. Bouxsein ML, Courtney AC, Hayes WC (1995) Ultrasound and densitometry of the calcaneus correlate with the failure loads of cadaveric femurs. Calcif Tissue Int 56:99–103

    Article  CAS  PubMed  Google Scholar 

  40. Pinilla T, Boardman K, Bouxsein M, Myers E, Hayes W (1996) Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int 58:231–235

    Article  CAS  PubMed  Google Scholar 

  41. Cheng XG, Lowet G, Boonen S, Nicholson PHF, Brys P, Nijs J, Dequeker J (1997) Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 20:213–218

    Article  CAS  PubMed  Google Scholar 

  42. Cheng XG, Lowet G, Boonen S, Nicholson PHF, Van Der Perre G, Dequeker J (1998) Prediction of vertebral and femoral strength in vitro by bone mineral density measured at different skeletal sites. J Bone Miner Res 13:1439–1443

    Article  CAS  PubMed  Google Scholar 

  43. Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108

    Article  CAS  PubMed  Google Scholar 

  44. Keyak JH, Rossi SA, Jones KA, Skinner HB (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31:125–133

    Article  CAS  PubMed  Google Scholar 

  45. Bouxsein ML, Coan BS, Lee SC (1999) Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone 25:49–54

    Article  CAS  PubMed  Google Scholar 

  46. Keyak JH (2000) Relationships between femoral fracture loads for two load configurations. J Biomech 33:499–502

    Article  CAS  PubMed  Google Scholar 

  47. Lochmuller EM, Groll O, Kuhn V, Eckstein F (2002) Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30:207–216

    Article  CAS  PubMed  Google Scholar 

  48. Eckstein F, Wunderer C, Boehm H, Kuhn V, Priemel M, Link TM, Lochmüller E-M (2004) Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur. J Bone Miner Res 19:379–385

    Article  PubMed  Google Scholar 

  49. Heini PF, Franz T, Fankhauser C, Gasser B, Ganz R (2004) Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones. Clin Biomech 19:506–512

    Article  Google Scholar 

  50. Manske SL, Liu-Ambrose T, de Bakker PM, Liu D, Kontulainen S, Guy P, Oxland TR, McKay HA (2006) Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength. Osteoporos Int 17:1539–1545

    Article  CAS  PubMed  Google Scholar 

  51. Pulkkinen P, Eckstein F, Lochmüller E-M, Kuhn V, Jämsä T (2006) Association of geometric factors and failure load level with the distribution of cervical vs. trochanteric hip fractures. J Bone Min Res 21:895–901

    Article  Google Scholar 

  52. Pulkkinen P, Jämsä T, Lochmüller EM, Kuhn V, Nieminen MT, Eckstein F (2008) Experimental hip fracture load can be predicted from plain radiography by combined analysis of trabecular bone structure and bone geometry. Osteoporos Int 19:547–558

    Article  CAS  PubMed  Google Scholar 

  53. Langton CM, Pisharody S, Keyak JH (2009) Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Med Eng Phys 31:668–672

    Article  CAS  PubMed  Google Scholar 

  54. de Bakker PM, Manske SL, Ebacher V, Oxland TR, Cripton PA, Guy P (2009) During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J Biomech 42:1917–1925

    Article  PubMed  Google Scholar 

  55. Dragomir D, Buijs J, McEligot S, Dai Y, Entwistle R, Salas C, Melton L, Bennet K, Khosla S, Amin S (2011) Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng 39:742–755

    Article  Google Scholar 

  56. Buijs J, Dragomir D (2011) Validated finite element models of the proximal femur using two-dimensional projected geometry and bone density. Comput Methods Prog Biomed 104:168–174

    Article  Google Scholar 

  57. Koivumaki J, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, Jamsa T (2012) CT-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 50:824–829

    Article  PubMed  Google Scholar 

  58. Koivumaki JEM, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, Jamsa T (2012) Cortical bone finite element models in the estimation of experimentally measured failure loads in the proximal femur. Bone 51:737–740

    Article  PubMed  Google Scholar 

  59. Nishiyama KK, Gilchrist S, Guy P, Cripton P, Boyd SK (2013) Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration. J Biomech 46:1231–1236

    Article  PubMed  Google Scholar 

  60. Dall'Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D (2013) A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone 52:27–38

    Article  PubMed  Google Scholar 

  61. Mirzaei M, Keshavarzian M, Naeini V (2014) Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method. Bone 64:108–114

    Article  PubMed  Google Scholar 

  62. Gilchrist S, Nishiyama KK, de Bakker P, Guy P, Boyd SK, Oxland T, Cripton PA (2014) Proximal femur elastic behaviour is the same in impact and constant displacement rate fall simulation. J Biomech 47:3744–3749

    Article  CAS  PubMed  Google Scholar 

  63. Ariza O, Gilchrist S, Widmer RP, Guy P, Ferguson SJ, Cripton PA, Helgason B (2015) Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing. J Biomech 48:224–232

    Article  CAS  PubMed  Google Scholar 

  64. Grassi L, Väänänen SP, Ristinmaa M, Jurvelin JS, Isaksson H (2016) How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements. J Biomech 49:802–806

    Article  PubMed  Google Scholar 

  65. Grassi L, Väänänen SP, Ristinmaa M, Jurvelin JS, Isaksson H (2016) Prediction of femoral strength using 3D finite element models reconstructed from DXA images: validation against experiments. Biomechanics and Modeling in Mechanobiology 1-12

  66. Robinovitch SN, Evans SL, Minns J et al (2009) Hip protectors: recommendations for biomechanical testing-an international consensus statement (part I). Osteoporos Int 20:1977–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Haider IT, Speirs AD, Frei H (2013) Effect of boundary conditions, impact loading and hydraulic stiffening on femoral fracture strength. J Biomech 46:2115–2121

    Article  PubMed  Google Scholar 

  68. Weber T, Yang K, Woo R, Fitzgerald R (1992) Proximal femur strength: correlation of the rate of loading and bone mineral density. ASME Adv Bioeng BED 22:111–114

    Google Scholar 

  69. Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data: a structural approach. Investig Radiol 25:6–18

    Article  CAS  Google Scholar 

  70. Kanis J, McCloskey E, Johansson H, Oden A, Borgstrom F, Strom O (2010) Development and use of FRAX in osteoporosis. Osteoporos Int 21:407–413

    Article  Google Scholar 

  71. Brekelmans WAM, Poorth HW, Slooff TJJH (1972) A new method to analyse the mechanical behaviour of skeletal parts. Acta orthop Scandinav 43:301–317

    Article  CAS  Google Scholar 

  72. Nielson C, Bouxsein M, Freitas S, Ensrud K, Orwoll E (2009) Trochanteric soft tissue thickness and hip fracture in older men. J Clin Endocrinol Metab 94:491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Blaak E (2001) Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4:499–502

    Article  CAS  PubMed  Google Scholar 

  74. Robinovitch SN, Feldman F, Yang Y, Schonnop R, Leung PM, Sarraf T, Sims-Gould J, Loughin M (2013) Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet 381:47–54

    Article  PubMed  Google Scholar 

  75. Nasiri Sarvi M (2015) Assessment of hip fracture risk by a two-level subject-specific biomechanical model. Mechanical Engineering. Ph.D. thesis, University of Manitoba, Canada, p 164

  76. Groen BE, Weerdesteyn V, Duysens J (2007) Martial arts fall techniques decrease the impact forces at the hip during sideways falling. J Biomech 40:458–462

    Article  CAS  PubMed  Google Scholar 

  77. Nasiri Sarvi M, Luo Y (2015) A two-level subject-specific biomechanical model for improving prediction of hip fracture risk. Clin Biomech 30:881–887

    Article  Google Scholar 

  78. Nasiri Sarvi M, Luo Y, Sun P, Ouyang J (2014) Experimental validation of subject-specific dynamics model for predicting impact force in sideways fall. J Biomed Sci Eng 7:405–418

    Article  Google Scholar 

  79. Pena E, Calvo B, Martinez MA, Doblare M (2007) An anisotropic visco-hyperelastic model for ligaments at finite strains. Formulation and computational aspects. Int J Solids Struct 44:760–778

    Article  Google Scholar 

  80. Majumder S, Roychowdhury A, Pal S (2008) Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations. J Biomech 41:2834–2842

    Article  PubMed  Google Scholar 

  81. Natali AN, Carniel EL, Pavan PG (2008) Constitutive modelling of inelastic behaviour of cortical bone. Med Eng Phys 30:905–912

    Article  PubMed  Google Scholar 

  82. Malmivaara A, Heliovaara M, Knekt P, Reunanen A, Aromaa A (1993) Risk factors for injurious falls leading to hospitalization or death in a cohort of 19,500 adults. Am J Epidemiol 138:384–394

    Article  CAS  PubMed  Google Scholar 

  83. Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC (1994) Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA 271:128–133

    Article  CAS  PubMed  Google Scholar 

  84. Laet C, Kanis JA, Oden A et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  85. Bouxsein ML, Szulc P, Munoz F, Thrall E, Sornay-Rendu E, Delmas PD (2007) Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. J Bone Miner Res 22:825–831

    Article  PubMed  Google Scholar 

  86. Armstrong MEG, Spencer EA, Cairns BJ, Banks E, Pirie K, Green J, Wright FL, Reeves GK, Beral V, for the Million Women Study C (2011) Body mass index and physical activity in relation to the incidence of hip fracture in postmenopausal women. J Bone Miner Res 26:1330–1338

    Article  PubMed  Google Scholar 

  87. Johansson H, Kanis JA, Odén A et al (2013) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29:223–233

    Article  Google Scholar 

  88. Majumder S, Roychowdhury A, Pal S (2013) Hip fracture and anthropometric variations: dominance among trochanteric soft tissue thickness, body height and body weight during sideways fall. Clin Biomech 28:1034–1040

    Article  Google Scholar 

  89. Bhan S, Levine IC, Laing AC (2014) Energy absorption during impact on the proximal femur is affected by body mass index and flooring surface. J Biomech 47:2391–2397

    Article  PubMed  Google Scholar 

  90. Choi WJ, Russell CM, Tsai CM, Arzanpour S, Robinovitch SN (2015) Age-related changes in dynamic compressive properties of trochanteric soft tissues over the hip. J Biomech 48:695–700

    Article  CAS  PubMed  Google Scholar 

  91. Derler S, Spierings AB, Schmitt KU (2005) Anatomical hip model for the mechanical testing of hip protectors. Med Eng Phys 27:475–485

    Article  PubMed  Google Scholar 

  92. Li N, Tsushima E, Tsushima H (2013) Comparison of impact force attenuation by various combinations of hip protector and flooring material using a simplified fall-impact simulation device. J Biomech 46:1140–1146

    Article  PubMed  Google Scholar 

  93. Laing AC, Robinovitch SN (2008) The force attenuation provided by hip protectors depends on impact velocity, pelvic size, and soft tissue stiffness. Journal of Biomechanical Engineering 130:

  94. Laing AC, Robinovitch SN (2008) Effect of soft shell hip protectors on pressure distribution to the hip during sideways falls. Osteoporos Int 19:1067–1075

    Article  CAS  PubMed  Google Scholar 

  95. Choi WJ, Hoffer JA, Robinovitch SN (2010) Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls. Clin Biomech 25:63–69

    Article  CAS  Google Scholar 

  96. Luo Y, Nasiri Sarvi M, Sun P, Leslie WD, Ouyang J (2014) Prediction of impact force in sideways fall by image-based subject-specific dynamics model. International Biomechanics 1-14

  97. Durkin JL, Dowling JJ, Andrews DM (2002) The measurement of body segment inertial parameters using dual energy X-ray absorptiometry. J Biomech 35:1575–1580

    Article  PubMed  Google Scholar 

  98. Luo Y, Nasiri Sarvi M (2015) A subject-specific inverse-dynamics approach for estimating joint stiffness in sideways fall. Int J Exp Comput Biomech 3:137–160

    Article  Google Scholar 

  99. Lo J, Ashton-Miller JA (2008) Effect of pre-impact movement strategies on the impact forces resulting from a lateral fall. J Biomech 41:1969–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. DeGoede KM, Ashton-Miller JA (2002) Fall arrest strategy affects peak hand impact force in a forward fall. J Biomech 35:843–848

    Article  CAS  PubMed  Google Scholar 

  101. Yoshikawa T, Turner CH, Peacock M, Slemenda CW, Weaver CM, Teegarden D, Markwardt P, Burr DB (1994) Geometric structure of the femoral neck measured using dual-energy X-ray absorptiometry. J Bone Miner Res 9:1053–1064

    Article  CAS  PubMed  Google Scholar 

  102. Hayes W, Myers E, Morris J, Gerhart T, Yett H, Lipsitz L (1993) Impact near the hip dominates fracture risk in elderly nursing home residents who fall. Calcif Tissue Int 52:192–198

    Article  CAS  PubMed  Google Scholar 

  103. Cc S, Hayes WC, McMahon TA (2001) Disturbance type and gait speed affect fall direction and impact location. J Biomech 34:309–317

    Article  Google Scholar 

  104. Nag PK, Vyas H, Nag A, Pal S (2008) Applying stabilometry in characterizing floor sitting modes of women. Int J Ind Ergon 38:984–991

    Article  Google Scholar 

  105. Nag PK, Chintharia S, Saiyed S, Nag A (1986) EMG analysis of sitting work postures in women. Appl Ergon 17:195–197

    Article  CAS  PubMed  Google Scholar 

  106. Hsiao ET, Robinovitch SN (1998) Common protective movements govern unexpected falls from standing height. J Biomech 31:1–9

    Article  CAS  PubMed  Google Scholar 

  107. Sabick MB, Hay JG, Goel VK, Banks SA (1999) Active responses decrease impact forces at the hip and shoulder in falls to the side. J Biomech 32:993–998

    Article  CAS  PubMed  Google Scholar 

  108. DeGoede KM, Ashton-Miller JA (2003) Biomechanical simulations of forward fall arrests: effects of upper extremity arrest strategy, gender and aging-related declines in muscle strength. J Biomech 36:413–420

    Article  PubMed  Google Scholar 

  109. Lo J, Ashton-Miller JA (2008) Effect of upper and lower extremity control strategies on predicted injury risk during simulated forward falls: a study in healthy young adults. J Biomech Eng 130:410–415

    Article  Google Scholar 

  110. Nevitt MC, Cummings SR, Hudes ES (1991) Risk factors for injurious falls: a prospective study. J Gerontol 46:M164–M170

    Article  CAS  PubMed  Google Scholar 

  111. Robinovitch SN, Chiu J, Sandler R, Liu Q (2000) Impact severity in self-initiated sits and falls associates with center-of-gravity excursion during descent. J Biomech 33:863–870

    Article  CAS  PubMed  Google Scholar 

  112. Weerdesteyn V, Rijken H, Geurts ACH, Smits-Engelsman BCM, Mulder T, Duysens J (2006) A five-week exercise program can reduce falls and improve obstacle avoidance in the elderly. Gerontology 52:131–141

    Article  PubMed  Google Scholar 

  113. Weerdesteyn V, Groen BE, van Swigchem R, Duysens J (2008) Martial arts fall techniques reduce hip impact forces in naive subjects after a brief period of training. J Electromyogr Kinesiol 18:235–242

    Article  CAS  PubMed  Google Scholar 

  114. Groen BE, Smulders E, de Kam D, Duysens J, Weerdesteyn V (2010) Martial arts fall training to prevent hip fractures in the elderly. Osteoporos Int 21:215–221

    Article  CAS  PubMed  Google Scholar 

  115. Van der Zijden AM, Groen BE, Tanck E, Nienhuis B, Verdonschot N, Weerdesteyn V (2012) Can martial arts techniques reduce fall severity? An in vivo study of femoral loading configurations in sideways falls. J Biomech 45:1650–1655

    Article  PubMed  Google Scholar 

  116. Choi WJ, Wakeling JM, Robinovitch SN (2015) Kinematic analysis of video-captured falls experienced by older adults in long-term care. J Biomech 48:911–920

    Article  CAS  PubMed  Google Scholar 

  117. O'Neill TW, Varlow J, Silman AJ, Reeve J, Reid DM, Todd C, Woolf AD (1994) Age and sex influences on fall characteristics. Ann Rheum Dis 53:773–775

    Article  PubMed  PubMed Central  Google Scholar 

  118. Iyo T, Maki Y, Sasaki N, Nakata M (2004) Anisotropic viscoelastic properties of cortical bone. J Biomech 37:1433–1437

    Article  PubMed  Google Scholar 

  119. Wu Z, Ovaert TC, Niebur GL (2012) Viscoelastic properties of human cortical bone tissue depend on gender and elastic modulus. J Orthop Res 30:693–699

    Article  CAS  PubMed  Google Scholar 

  120. Bembey AK, Oyen ML, Bushby AJ, Boyde A (2006) Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos Mag 86:5691–5703

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nasiri Sarvi.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri Sarvi, M., Luo, Y. Sideways fall-induced impact force and its effect on hip fracture risk: a review. Osteoporos Int 28, 2759–2780 (2017). https://doi.org/10.1007/s00198-017-4138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4138-5

Keywords

Navigation