Skip to main content

Advertisement

Log in

Association between obesity and femoral neck strength according to age, sex, and fat distribution

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Indicators of total and abdominal obesity were negatively associated with femoral neck strength indices. There are age-, sex-, and fat distribution-specific differences in the magnitude of these associations. These suggested that indicators of obesity with different magnitude according to age, sex, and fat distribution associated with poor bone health.

Introduction

Fat regulates bone metabolism, but the associations of total and abdominal obesity with bone health are inconsistent. We investigated the association between indicators of obesity and composite indices of femoral neck (FN) strength reflecting the risk of hip fracture.

Methods

This population-based cross-sectional study examined data from the Korea National Health and Nutrition Examination Surveys. Participants were divided into groups according to age (25–49/≥50 years) and sex. We examined total fat mass (TFM) and percentage fat mass (pFM) as indicators of total obesity and truncal fat mass (TrFM) as an indicator of abdominal obesity. We calculated the composite indices of FN strength and anthropometric clinical indicators of abdominal obesity.

Results

TFM, pFM, and TrFM were negatively associated with the composite indices, irrespective of age and sex (P < 0.001–0.005). Most anthropometric clinical indicators of abdominal obesity showed negative associations with the composite indices regardless of age and sex (P < 0.001–0.048), except for women aged 25–49 years. In men, magnitudes of the negative contributions of TFM to the composite indices were significantly stronger at age 25–49 years than at age ≥50 years. Magnitudes of negative associations of TFM with the composite indices were greater in men than in women. TrFM had a more detrimental effect than TFM on FN strength in men aged 25–49 years and in women of both ages.

Conclusion

Indicators of total and abdominal obesity negatively associated with FN strength, and magnitudes of their effects on bone health differed according to age, sex, and fat distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMD:

Bone mineral density

FN:

Femoral neck

FNW:

Femoral neck width

HAL:

Hip axis length

FM:

Fat mass

TFM:

Total fat mass

pFM:

Percentage fat mass

TrFM:

Truncal fat mass

KNHANES:

Korea National Health and Nutrition Examination Surveys

eGFR:

Estimated glomerular filtration rate

WC:

Waist circumference

BMI:

Body mass index

TG:

Triglyceride

HDL-C:

High-density lipoprotein cholesterol

25(OH)D:

25-Hydroxyvitamin D

DXA:

Dual-energy X-ray absorptiometry

HSA:

Hip structure analysis

VAI:

Visceral adiposity index

C index:

Conicity index

WHtR:

Waist-to-height ratio

SI:

Strength index

VIF:

Variance inflation factor

References

  1. Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38:S4–S9. doi:10.1016/j.bone.2005.11.024

    Article  PubMed  Google Scholar 

  2. Park C, Ha YC, Jang S, Jang S, Yoon HK, Lee YK (2011) The incidence and residual lifetime risk of osteoporosis-related fractures in Korea. J Bone Miner Metab 29:744–751. doi:10.1007/s00774-011-0279-3

    Article  PubMed  Google Scholar 

  3. Johnell O, Kanis J (2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16(Suppl 2):S3–S7. doi:10.1007/s00198-004-1702-6

    Article  PubMed  Google Scholar 

  4. Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135. doi:10.1016/s0140-6736(05)66870-5

    Article  PubMed  Google Scholar 

  5. Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, Hochberg MC, Vogt MT, Orwoll ES (2005) Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 90:2787–2793. doi:10.1210/jc.2004-1568

    Article  PubMed  CAS  Google Scholar 

  6. Sanders KM, Nicholson GC, Watts JJ, Pasco JA, Henry MJ, Kotowicz MA, Seeman E (2006) Half the burden of fragility fractures in the community occur in women without osteoporosis. When is fracture prevention cost-effective? Bone 38:694–700. doi:10.1016/j.bone.2005.06.004

    Article  PubMed  Google Scholar 

  7. Karlamangla AS, Barrett-Connor E, Young J, Greendale GA (2004) Hip fracture risk assessment using composite indices of femoral neck strength: the Rancho Bernardo study. Osteoporos Int 15:62–70. doi:10.1007/s00198-003-1513-1

    Article  PubMed  Google Scholar 

  8. Ishii S, Greendale GA, Cauley JA, Crandall CJ, Huang MH, Danielson ME, Karlamangla AS (2012) Fracture risk assessment without race/ethnicity information. J Clin Endocrinol Metab 97:3593–3602. doi:10.1210/jc.2012-1997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yu N, Liu YJ, Pei Y et al (2010) Evaluation of compressive strength index of the femoral neck in Caucasians and Chinese. Calcif Tissue Int 87:324–332. doi:10.1007/s00223-010-9406-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ishii S, Cauley JA, Crandall CJ, Srikanthan P, Greendale GA, Huang MH, Danielson ME, Karlamangla AS (2012) Diabetes and femoral neck strength: findings from the Hip Strength Across the Menopausal Transition Study. J Clin Endocrinol Metab 97:190–197. doi:10.1210/jc.2011-1883

    Article  PubMed  CAS  Google Scholar 

  11. Faje A, Klibanski A (2012) Body composition and skeletal health: too heavy? too thin? Curr Osteoporos Rep 10:208–216. doi:10.1007/s11914-012-0106-3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gonnelli S, Caffarelli C, Nuti R (2014) Obesity and fracture risk. Clin Cases Miner Bone Metab 11:9–14

    PubMed  PubMed Central  Google Scholar 

  13. Ahn SH, Lee SH, Kim H, Kim BJ, Koh JM (2014) Different relationships between body compositions and bone mineral density according to gender and age in Korean populations (KNHANES 2008-2010). J Clin Endocrinol Metab 99:3811–3820. doi:10.1210/jc.2014-1564

    Article  PubMed  CAS  Google Scholar 

  14. Klahr S (1989) The modification of diet in renal disease study. N Engl J Med 320:864–866. doi:10.1056/nejm198903303201310

    Article  PubMed  CAS  Google Scholar 

  15. Kelly TL, Wilson KE, Heymsfield SB (2009) Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS One 4:e7038. doi:10.1371/journal.pone.0007038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lee EY, Kim D, Kim KM, Kim KJ, Choi HS, Rhee Y, Lim SK (2012) Age-related bone mineral density patterns in Koreans (KNHANES IV). J Clin Endocrinol Metab 97:3310–3318. doi:10.1210/jc.2012-1488

    Article  PubMed  CAS  Google Scholar 

  17. Myong JP, Kim HR, Choi SE, Koo JW (2013) Dose-related effect of urinary cotinine levels on bone mineral density among Korean females. Osteoporos Int 24:1339–1346. doi:10.1007/s00198-012-2107-6

    Article  PubMed  CAS  Google Scholar 

  18. Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304. doi:10.1359/jbmr.2000.15.12.2297

    Article  PubMed  CAS  Google Scholar 

  19. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, Galluzzo A (2010) Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 33:920–922. doi:10.2337/dc09-1825

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang X, Shu XO, Li H, Yang G, Xiang YB, Cai Q, Ji BT, Gao YT, Zheng W (2013) Visceral adiposity and risk of coronary heart disease in relatively lean Chinese adults. Int J Cardiol 168:2141–2145. doi:10.1016/j.ijcard.2013.01.275

    Article  PubMed  PubMed Central  Google Scholar 

  21. Valdez R (1991) A simple model-based index of abdominal adiposity. J Clin Epidemiol 44:955–956

    Article  PubMed  CAS  Google Scholar 

  22. Weaver B, Wuensch KL (2013) SPSS and SAS programs for comparing Pearson correlations and OLS regression coefficients. Behav Res Methods 45:880–895. doi:10.3758/s13428-012-0289-7

    Article  PubMed  Google Scholar 

  23. Reid IR, Plank LD, Evans MC (1992) Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 75:779–782. doi:10.1210/jcem.75.3.1517366

    Article  PubMed  CAS  Google Scholar 

  24. Hsu YH, Venners SA, Terwedow HA et al (2006) Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 83:146–154

    Article  PubMed  CAS  Google Scholar 

  25. Shao HD, Li GW, Liu Y, Qiu YY, Yao JH, Tang GY (2015) Contributions of fat mass and fat distribution to hip bone strength in healthy postmenopausal Chinese women. J Bone Miner Metab 33:507–515. doi:10.1007/s00774-014-0613-7

    Article  PubMed  Google Scholar 

  26. Parhami F, Jackson SM, Tintut Y, Le V, Balucan JP, Territo M, Demer LL (1999) Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Miner Res 14:2067–2078. doi:10.1359/jbmr.1999.14.12.2067

    Article  PubMed  CAS  Google Scholar 

  27. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    Article  PubMed  CAS  Google Scholar 

  28. Okorodudu DO, Jumean MF, Montori VM, Romero-Corral A, Somers VK, Erwin PJ, Lopez-Jimenez F (2010) Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes 34:791–799. doi:10.1038/ijo.2010.5

    Article  CAS  Google Scholar 

  29. Amato MC, Giordano C (2014) Visceral adiposity index: an indicator of adipose tissue dysfunction. Int J Endocrinol 2014:730827. doi:10.1155/2014/730827

    Article  PubMed  PubMed Central  Google Scholar 

  30. Roriz AK, Passos LC, de Oliveira CC, Eickemberg M, Moreira Pde A, Sampaio LR (2014) Evaluation of the accuracy of anthropometric clinical indicators of visceral fat in adults and elderly. PLoS One 9:e103499. doi:10.1371/journal.pone.0103499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sogaard AJ, Holvik K, Omsland TK, Tell GS, Dahl C, Schei B, Falch JA, Eisman JA, Meyer HE (2015) Abdominal obesity increases the risk of hip fracture: a population-based study of 43,000 women and men aged 60-79 years followed for 8 years. Cohort of Norway J Intern Med 277:306–317. doi:10.1111/joim.12230

    Article  PubMed  CAS  Google Scholar 

  32. Nguyen ND, Pongchaiyakul C, Center JR, Eisman JA, Nguyen TV (2005) Abdominal fat and hip fracture risk in the elderly: the Dubbo Osteoporosis Epidemiology Study. BMC Musculoskelet Disord 6:11. doi:10.1186/1471-2474-6-11

    Article  PubMed  PubMed Central  Google Scholar 

  33. Folsom AR, Kushi LH, Anderson KE, Mink PJ, Olson JE, Hong CP, Sellers TA, Lazovich D, Prineas RJ (2000) Associations of general and abdominal obesity with multiple health outcomes in older women: the Iowa Women’s Health Study. Arch Intern Med 160:2117–2128

    Article  PubMed  CAS  Google Scholar 

  34. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr (1999) Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med 341:1097–1105. doi:10.1056/nejm199910073411501

    Article  PubMed  CAS  Google Scholar 

  35. Zamboni M, Armellini F, Sheiban I, De Marchi M, Todesco T, Bergamo-Andreis IA, Cominacini L, Bosello O (1992) Relation of body fat distribution in men and degree of coronary narrowings in coronary artery disease. Am J Cardiol 70:1135–1138

    Article  PubMed  CAS  Google Scholar 

  36. Bjorntorp P (1988) Abdominal obesity and the development of noninsulin-dependent diabetes mellitus. Diabetes Metab Rev 4:615–622

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant (2014-1215) from the Asan Institute for Life Sciences, Seoul, Republic of Korea, and by a grant from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (project no.: HI14C2258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Lee.

Ethics declarations

Informed consent

All participants in the KNHANES survey provided informed consent.

Conflict of interest

None.

Electronic supplementary material

ESM 1

(DOC 49 kb).

ESM 2

(DOC 59 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, S.H., Kim, B.J. et al. Association between obesity and femoral neck strength according to age, sex, and fat distribution. Osteoporos Int 28, 2137–2146 (2017). https://doi.org/10.1007/s00198-017-4015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4015-2

Keywords

Navigation