Skip to main content
Log in

Computed digital absorptiometry for measurement of phalangeal bone mineral mass on a slot-scanning digital radiography system

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Computed digital absorptiometry is a low-cost and low-radiation technique for rapid measurement of phalangeal bone mineral mass. We implement and evaluate this technique on a slot-scanning radiography system. Results, based on measurements of excised phalangeal bones, indicate that the technique has potential for use in clinical assessment of osteoporosis.

Introduction

The current gold standard method for bone assessment in the diagnosis of osteoporosis requires specialised and expensive machines, highly trained personnel to conduct the examination and is available only at specialist centres. The technique, termed dual-energy X-ray absorptiometry (DXA), involves taking a bone mineral density measurement at the femur or lumbar spine. Measurements of bone at peripheral sites such as the phalanges using DXA and other techniques have been shown to have potential use in the diagnosis of osteoporosis. Computed digital absorptiometry (CDA) is a low-cost, low-radiation radiographic technique for assessing phalangeal bone mineral mass. It uses an aluminium step wedge as a calibration device to compute bone mineral mass in units of equivalent aluminium thickness. In this study, we assess the feasibility of using CDA on a slot-scanning radiography system for measuring phalangeal bone mineral mass.

Methods

We implement and evaluate fully automated computed digital absorptiometry (CDA) of the middle phalanx of the middle finger on a slot-scanning radiography system.

Results

The ash weight of incinerated bones was measured and shown to have a correlation of 0.92 with CDA-derived bone mineral mass. CDA measurements had a coefficient of variation of 0.26 %, indicating high precision.

Conclusion

We conclude, based on these results, that CDA on a slot-scanning radiography machine may be useful for clinical assessment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO (2003) Prevention and management of osteoporosis. World Health Organ Tech Rep Ser 921:1–164

    Google Scholar 

  2. Blake GM, Fogelman I (2010) An update on dual-energy x-ray absorptiometry. Semin Nucl Med 40(1):62–73

    Article  PubMed  Google Scholar 

  3. Boehm HF, Link TM (2004) Bone imaging: traditional techniques and their interpretation. Curr Osteoporos Rep 2(2):41–46

    Article  PubMed  Google Scholar 

  4. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24(1):23–57

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC, Lindsay R (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8(5):468–489

    Article  PubMed  CAS  Google Scholar 

  6. Fiter J, Nolla JM, Gómez-Vaquero C, Martínez-Aguilá D, Valverde J, Roig-Escofet D (2001) A comparative study of computed digital absorptiometry and conventional dual-energy x-ray absorptiometry in postmenopausal women. Osteoporos Int 12(7):565–569

    Article  PubMed  CAS  Google Scholar 

  7. Bouxsein ML, Michaeli DA, Plass DB, Schick DA, Melton ME (1997) Precision and accuracy of computed digital absorptiometry for assessment of bone density of the hand. Osteoporos Int 7(5):444–449

    Article  PubMed  CAS  Google Scholar 

  8. Dhainaut A, Rohde G, Hoff M, Syversen U, Haugeberg G (2011) Phalangeal densitometry compared with dual energy X-ray absorptiometry for assessment of bone mineral density in elderly women. J Womens Health 20(12):1789–1795

    Article  Google Scholar 

  9. Glüer CC, Jergas M, Hans D (1997) Peripheral measurement techniques for the assessment of osteoporosis. Semin Nucl Med 27(3):229–247

    Article  PubMed  Google Scholar 

  10. Gulam M, Thornton MM, Hodsman AB, Holdsworth DW (2000) Bone mineral measurement of phalanges: comparison of radiographic absorptiometry and area dual X-ray absorptiometry. Radiology 216(2):586–591

    Article  PubMed  CAS  Google Scholar 

  11. Mussolino ME, Looker AC, Madans JH et al (1997) Phalangeal bone density and hip fracture risk. Arch Intern Med 157(4):433–438

    Article  PubMed  CAS  Google Scholar 

  12. Ravn P, Overgaard K, Huang C, Ross PD, Green D, McClung M (1996) Comparison of bone densitometry of the phalanges, distal forearm and axial skeleton in early postmenopausal women participating in the EPIC study. Osteoporos Int 6(4):308–313

    Article  PubMed  CAS  Google Scholar 

  13. Ross P (1997) Radiographic absorptiometry for measuring bone mass. Osteoporos Int 7(3):103–107

    Article  Google Scholar 

  14. Sotoca JM, Iñesta JM, Belmonte MA (2003) Hand bone segmentation in radioabsorptiometry images for computerised bone mass assessment. Comput Med Imaging Graph 27(6):459–467

    Article  PubMed  Google Scholar 

  15. Wasnich RD (1998) Perspective on fracture risk and phalangeal bone mineral density. J Clin Densitom 1(3):259–268

    Article  PubMed  CAS  Google Scholar 

  16. Versluis RGJA, Vismans FJFE, van de Ven CM, Springer MP, Petri H (1999) Radiographic absorptiometry of the phalanges as a screening instrument to detect osteoporosis of the hip. Acta Radiol 40(4):418–421

    Article  PubMed  CAS  Google Scholar 

  17. Lang TF (2010) Bone mineral assessment of the axial skeleton: technical aspects. In: Adler RA (ed), Contemporary endocrinology: osteoporosis: pathophysiology and clinical management, 2nd edn, Springer, pp. 23–50

  18. Sas TC, de Muinck Keizer-Schrama SM, Stijnen T, van Teunenbroek A, van Leeuwen WJ, Asarfi A, van Rijn RR, Drop SL (2001) Bone mineral density assessed by phalangeal radiographic absorptiometry before and during long-term growth hormone treatment in girls with Turner’s syndrome participating in a randomized dose-response study. Pediatr Res 50:417–422

    Article  PubMed  CAS  Google Scholar 

  19. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  PubMed  CAS  Google Scholar 

  20. Dawson SP (2009) Digital X-ray analysis for monitoring fracture healing. Dissertaion, University of Edinburgh, Scotland

    Google Scholar 

  21. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168

    Google Scholar 

  22. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  Google Scholar 

  23. Chalker B, Barnes D, Isdale P (1985) Calibration of x-ray densitometry for the measurement of coral skeletal density. Coral Reefs 2:95–100

    Article  Google Scholar 

  24. Scheelke M, Potgieter JH, de Villiers M (2005) System characterization of the STATSCAN full body slit scanning radiography machine: theory and experiment. SPIE Proc Med Imaging Phys Med Imaging 5745:1179–1190

    Google Scholar 

  25. Symmons R (2004) Digital photodensitometry: a reliable and accessible method for measuring bone density. J Archaeol Sci 31(6):711–719

    Article  Google Scholar 

  26. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern B Cybern 9(1):62–66

    Article  Google Scholar 

  27. Dendere R, Kabelitz G, Douglas TS (2013) Model-based segmentation of the middle phalanx in digital radiographic images of the hand. EMBC 35th Ann Int Conf: 3702–3705

  28. Moreau M, Holdsworth DW, Fenster A (1994) Dual-energy x-ray imaging technique for in vitro tissue composition measurement. J Med Phys 21(11):1807–1815

    Article  CAS  Google Scholar 

  29. Steel SA, Swann P, Langley G, Langton CM (1997) A phantom for evaluating bone mineral density of the hand by dual-energy x-ray absorptiometry. Physiol Meas 18(3):233–240

    Article  PubMed  CAS  Google Scholar 

  30. El Maghraoui A, Roux C (2008) DXA scanning in clinical practice. QJM 101(8):605–617

    Article  PubMed  Google Scholar 

  31. Haidekker MA, Stevens HY, Frangos JA (2004) Computerized methods for X-ray-based small bone densitometry. Comput Methods Programs Biomed 73(1):35–42

    Article  PubMed  Google Scholar 

  32. Colbert C, Spruit JJ, Davila LR (1967) Biophysical properties of bone: determining mineral concentration from the x-ray image. Trans NY Acad Sci 30(2):271–290

    Article  CAS  Google Scholar 

  33. Yang SO, Hagiwara S, Engelke K, Dhillon MS, Guglielmi G, Bendavid EJ, Soejima O, Nelson DL, Genant HK (1994) Radiographic absorptiometry for bone mineral measurement of the phalanges: precision and accuracy study. Radiology 192(3):857–859

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Lodox Systems (Pty) Ltd, the Technology and Human Resources for Industry Program (THRIP) of the National Research Foundation in South Africa, the University of Cape Town and the Medical Research Council of South Africa.

Conflicts of interest

Ronald Dendere and Tania S. Douglas declare that they have no conflict of interest. Sarah P. Whiley is a former employee of Lodox Systems (South Africa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Douglas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dendere, R., Whiley, S.P. & Douglas, T.S. Computed digital absorptiometry for measurement of phalangeal bone mineral mass on a slot-scanning digital radiography system. Osteoporos Int 25, 2625–2630 (2014). https://doi.org/10.1007/s00198-014-2792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2792-4

Keywords

Navigation