Skip to main content

Advertisement

Log in

Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We used quantitative computed tomography and finite element analysis to classify women with and without hip fracture. Highly accurate classifications were achieved indicating the potential for these methods to be used for subject-specific assessment of fracture risk.

Introduction

Areal bone mineral density (aBMD) is the current clinical diagnostic standard for assessing fracture risk; however, many fractures occur in people not defined as osteoporotic by aBMD. Finite element (FE) analysis based on quantitative computed tomography (QCT) images takes into account both bone material and structural properties to provide subject-specific estimates of bone strength. Thus, our objective was to determine if FE estimates of bone strength could classify women with and without hip fracture.

Methods

Twenty women with femoral neck fracture and 15 women with trochanteric fractures along with 35 age-matched controls were scanned with QCT at the hip. Since it is unknown how a specific subject will fall, FE analysis was used to estimate bone stiffness and bone failure load under loading configurations with femoral neck internal rotation angles ranging from −30° to 45° with 15° intervals. Support vector machine (SVM) models and a tenfold cross-validation scheme were used to classify the subjects with and without fracture.

Results

High accuracy was achieved when using only FE analysis for classifying the women with and without fracture both when the fracture types were pooled (82.9 %) and when analyzed separately by femoral neck fracture (87.5 %) and trochanteric fracture (80.0 %). The accuracy was further increased when FE analysis was combined with volumetric BMD (pooled fractures accuracy, 91.4 %)

Conclusions

While larger prospective studies are needed, these results demonstrate that FE analysis using multiple loading configurations together with SVM models can accurately classify individuals with previous hip fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amin S, Kopperdhal DL, Melton LJ, Achenbach SJ, Therneau TM, Riggs BL, Keaveny TM, Khosla S (2011) Association of hip strength estimates by finite element analysis with fractures in women and men. J Bone Miner Res 26:1593–1600

    Article  PubMed Central  PubMed  Google Scholar 

  2. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40:1745–1753

    Article  PubMed  Google Scholar 

  3. Bessho M, Ohnishi I, Matsumoto T, Ohashi S, Matsuyama J, Tobita K, Kaneko M, Nakamura K (2009) Prediction of proximal femur strength using a CT-based nonlinear finite element method: differences in predicted fracture load and site with changing load and boundary conditions. Bone 45:226–231

    Article  PubMed  Google Scholar 

  4. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32:1013–1020

    Article  CAS  PubMed  Google Scholar 

  5. Dragomir-Daescu D, Op Den Buijs J, McEligot S, Dai Y, Entwistle RC, Salas C, Melton LJ, Bennet KE, Khosla S, Amin S (2011) Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng 39:742–755

    Article  PubMed  Google Scholar 

  6. Duchemin L, Mitton D, Jolivet E, Bousson V, Laredo JD, Skalli W (2008) An anatomical subject-specific FE-model for hip fracture load prediction. Comput Method Biomech 11:105–111

    Article  CAS  Google Scholar 

  7. Grassi L, Schileo E, Taddei F, Zani L, Juszczyk M, Cristofolini L, Viceconti M (2012) Accuracy of finite element predictions in sideways load configurations for the proximal human femur. J Biomech 45:394–399

    Article  CAS  PubMed  Google Scholar 

  8. Keaveny TM, Kopperdahl DL, Melton LJ, Hoffmann PF, Amin S, Riggs BL, Khosla S (2010) Age-dependence of femoral strength in white women and men. J Bone Miner Res 25:994–1001

    Article  PubMed  Google Scholar 

  9. Keyak JH, Rossi SA, Jones KA, Skinner HB (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31:125–133

    Article  CAS  PubMed  Google Scholar 

  10. Keyak JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23:165–173

    Article  CAS  PubMed  Google Scholar 

  11. Keyak JH, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Zhao S, Kornak J, Harris TB, Sigurdsson G, Jonsson BY, Siggeirsdottir K, Eiriksdottir G, Gudnason V, Lang TF (2011) Male–female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone 48:1239–1245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Koivumäki JE, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, Jämsä T (2012) Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 50:824–829

    Article  PubMed  Google Scholar 

  13. Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, Ensrud K, Lane N, Hoffmann PR, Kopperdahl DL, Keaveny TM (2009) Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res 24:475–483

    Article  PubMed  Google Scholar 

  14. Viceconti M, Davinelli M, Taddei F, Cappello A (2004) Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. J Biomech 37:1597–1605

    Article  PubMed  Google Scholar 

  15. Wakao N, Harada A, Matsui Y, Takemura M, Shimokata H, Mizuno M, Ito M, Matsuyama Y, Ishiguro N (2009) The effect of impact direction on the fracture load of osteoporotic proximal femurs. Med Eng Phys 31:1134–1139

    Article  PubMed  Google Scholar 

  16. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  17. Melton LJ III (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18:1139–1141

    Article  PubMed  Google Scholar 

  18. Nishiyama KK, Gilchrist S, Guy P, Cripton P, Boyd SK (2013) Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration. J Biomech 46:1231–1236

    Article  PubMed  Google Scholar 

  19. Lang TF, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Chengshi J, Kornak J, Harris TB, Sigurdsson G, Jonsson BY, Siggeirsdottir K, Eiriksdottir G, Gudnason V, Keyak JH (2012) Age-related loss of proximal femoral strength in elderly men and women: the Age Gene/Environment Susceptibility Study–Reykjavik. Bone 50:743–748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Keaveny TM, McClung MR, Wan X, Kopperdahl DL, Mitlak BH, Krohn K (2012) Femoral strength in osteoporotic women treated with teriparatide or alendronate. Bone 50:165–170

    Article  CAS  PubMed  Google Scholar 

  21. Grisso JA, Kelsey JL, Strom BL, Ghiu GY, Maislin G, O'Brien LA, Hoffman S, Kaplan F (1991) Risk factors for falls as a cause of hip fracture in women. N Engl J Med 324:1326–1331

    Article  CAS  PubMed  Google Scholar 

  22. Nevitt MC, Cummings SR, Kidd S, Black D (1989) Risk factors for nonsyncopal falls - a prospective study. JAMA 261:2663–2668

    Article  CAS  PubMed  Google Scholar 

  23. Vapnik V (1982) Estimation of dependences based on empirical data: Springer Series in Statistics. Springer, New York

    Google Scholar 

  24. Valyon J, Horváth G (2003) A weighted generalized LS-SVM. Period Polytech Electr Eng 47:229–251

    Google Scholar 

  25. Kavitha MS, Asano A, Taguchi A, Kurita T, Sanada M (2012) Diagnosis of osteoporosis from dental panoramic radiographs using the support vector machine method in a computer-aided system. BMC Med Imaging 12:1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lee S, Lee JW, Jeong JW, Yoo DS, Kim S (2008) A preliminary study on discrimination of osteoporotic fractured group from nonfractured group using support vector machine. Conf Proc IEEE Eng Med Biol Soc 2008:474–477

    PubMed  Google Scholar 

  27. Nishiyama K, Macdonald M, Hanley A, Boyd K (2013) Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR- pQCT. Osteoporos Int 24:1733–1740

    Google Scholar 

  28. Ito M, Wakao N, Hida T, Matsui Y, Abe Y, Aoyagi K, Uetani M, Harada A (2010) Analysis of hip geometry by clinical CT for the assessment of hip fracture risk in elderly Japanese women. Bone 46:453–457

    Article  PubMed  Google Scholar 

  29. Treece GM, Gee AH, Mayhew PM, Poole KE (2010) High resolution cortical bone thickness measurement from clinical CT data. Med Image Anal 14:276–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. McErlain DD, Nishiyama KK, Sandino C, Boyd SK (2012) Evaluation of the effect of CT image resolution on voxel-based, subject specific FEA models. J Biomech 45(S1):S545

    Article  Google Scholar 

  31. Keller TS (1994) Predicting the compressive mechanical behavior of bone. J Biomech 27:1159–1168

    Article  CAS  PubMed  Google Scholar 

  32. Varghese B, Short D, Penmetsa R, Goswami T, Hangartner T (2011) Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion. J Biomech 44:1374–1379

    Article  PubMed  Google Scholar 

  33. Pistoia W, van Rietbergen B, Lochmüller EM, Lill CA, Eckstein F, Rüegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30:842–848

    Article  CAS  PubMed  Google Scholar 

  34. McLachlan GJ, Do KA, Ambroise C (2004) Analyzing microarray gene expression data. Wiley, New Jersey

    Book  Google Scholar 

  35. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor 11(1):10–18

    Article  Google Scholar 

  36. Feng Z (2010) Classification versus association models: should the same methods apply? Scand J Clin Lab Invest Suppl 242:53–58

    Article  PubMed Central  PubMed  Google Scholar 

  37. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  38. Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC (1996) Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int 58:231–235

    CAS  PubMed  Google Scholar 

  39. Keyak JH, Skinner HB, Fleming JA (2001) Effect of force direction on femoral fracture load for two types of loading conditions. J Orthop Res 19:539–544

    Article  CAS  PubMed  Google Scholar 

  40. Ross PD, Norimatsu H, Davis JW, Yano K, Wasnich RD, Fujiwara S, Hosoda Y, Melton LJ (1991) A comparison of hip fracture incidence among native Japanese, Japanese Americans, and American Caucasians. Am J Epidemiol 133:801–809

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank all of the participants in this study as well as all of the technicians who performed the scans. We would also like to thank Meaghan Nolan for the preparation of the figure. We would like to acknowledge the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Vanier Canada Graduate Scholarships.

Conflicts of interest

MI has received research grants from Chugai and consulting fees from Asahi. Kasei, Chugai, Ono, Astellas, and Daiichi Sankyo. KKN, AH, and SKB have no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishiyama, K.K., Ito, M., Harada, A. et al. Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporos Int 25, 619–626 (2014). https://doi.org/10.1007/s00198-013-2459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2459-6

Keywords

Navigation