Skip to main content
Log in

Implications of local osteoporosis on the efficacy of anti-resorptive drug treatment: a 3-year follow-up finite element study in risedronate-treated women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The existence of local osteoporosis necessitates patient-specific analysis. Lower and higher ranges of local buckling ratio were found at femoral necks for adequate and inadequate drug response groups, respectively (grouped based on fracture loads). Management of hip fracture risk should be targeted at local geometric abnormalities causing instability.

Introduction

Hip fracture amongst the elderly is a growing concern especially with improvements in living standards and increasing lifespan. Approximately half of the total hip fractures result from those without osteoporosis. This escalates the need to observe local osteoporosis. By observing the local buckling ratio (BR) in the femoral neck in ten risedronate-treated subjects over 3 years, we discovered that subjects with improved fracture loads, as predicted by finite element (FE) analysis, were associated with lower local BR and vice versa.

Methods

The 3D models of the left proximal femurs were generated, and local BR values at 30° intervals were obtained from femoral neck slices by measuring the respective mean cortical thickness and mean outer radius. Following geometric analysis, structural strength was examined with FE analysis where critical fracture loads (F cr) were acquired from sideways fall load simulations.

Results

We classified subjects in three groups according to the change in F cr: adequate (+20 %), inadequate (−22 %) and indefinite (−2 %) drug response groups. A common striking feature was that lower and higher ranges of local BR values (baseline year) were found for adequate (min = 2.14, max = 8.04) and inadequate (min = 1.72, max = 11.38) drug response groups, respectively.

Conclusions

Subjects in the inadequate drug response group exhibited high local BR at the supero-anterior and supero-posterior regions. These high local BR values coincided with FE-predicted critical strain regions, whereas subjects from the adequate drug response group showed significantly reduced strain regions. The superiority of coupling geometry (BR) with structure (F cr) over bone mineral density measurements alone by monitoring local osteoporosis has been illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Melton LJ 3rd (1993) Hip fractures: a worldwide problem today and tomorrow. Bone 14(Suppl 1):S1–8

    Article  PubMed  Google Scholar 

  2. Cooper C, Cole ZA, Holroyd CR, Earl SC, Harvey NC, Dennison EM, Melton LJ, Cummings SR, Kanis JA (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 22:1277–1288

    Article  PubMed  CAS  Google Scholar 

  3. Berry SD, Miller RR (2008) Falls: epidemiology, pathophysiology, and relationship to fracture. Curr Osteoporo Rep 6:149–154

    Article  Google Scholar 

  4. Brauer CA, Coca-Perraillon M, Cutler DM, Rosen AB (2009) Incidence and mortality of hip fractures in the United States. JAMA: J Am Med Assoc 302:1573–1579

    Article  CAS  Google Scholar 

  5. Bates DW, Black DM, Cummings SR (2002) Clinical use of bone densitometry: clinical applications. JAMA-J Am Med Assoc 288:1898–1900

    Article  Google Scholar 

  6. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  PubMed  CAS  Google Scholar 

  7. Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, Hochberg MCV MT, Orwoll ES (2005) Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 90:2787–2793

    Article  PubMed  CAS  Google Scholar 

  8. Poole KE, Treece GM, Mayhew PM, Vaculik J, Dungl P, Horak M, Stepan JJ, Gee AH (2012) Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture. PLoS One 7:e38466

    Article  PubMed  CAS  Google Scholar 

  9. McCreadie BR, Goldstein SA (2000) Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res 15:2305–2308

    Article  PubMed  CAS  Google Scholar 

  10. Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA (2007) Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. J Bone Miner Res 22:1781–1790

    Article  PubMed  Google Scholar 

  11. Schott AM, Cormier C, Hans D et al (1998) How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study. Osteoporos Int 8:247–254

    Article  PubMed  CAS  Google Scholar 

  12. Black DM, Steinbuch M, Palermo L, Dargent-Molina P, Lindsay R, Hoseyni MS, Johnell O (2001) An assessment tool for predicting fracture risk in postmenopausal women. Osteoporos Int 12:519–528

    Article  PubMed  CAS  Google Scholar 

  13. Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348:1535–1541

    Article  PubMed  CAS  Google Scholar 

  14. Black DM, Thompson DE, Bauer DC, Ensrud K, Musliner T, Hochberg MC, Nevitt MC, Suryawanshi S, Cummings SR, Fracture Intervention Trial (2000) Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab 85:4118–4124

    Article  PubMed  CAS  Google Scholar 

  15. Cummings SR, Black DM, Thompson DE et al (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the fracture intervention trial. JAMA-J Am Med Assoc 280:2077–2082

    Article  CAS  Google Scholar 

  16. McClung MR, Geusens P, Miller PD et al (2001) Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med 344:333–340

    Article  PubMed  CAS  Google Scholar 

  17. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

    Article  PubMed  Google Scholar 

  18. Bouxsein ML (2005) Determinants of skeletal fragility. Best Pract Res Clin Rheumatol 19:897–911

    Article  PubMed  Google Scholar 

  19. Young WC (1989) Elastic stability formulas for stress and strain. In: Crawford H, Thomas S (eds) Roark's formulas for stress and strain, 6th edn. McGraw-Hill, New York, p 688

    Google Scholar 

  20. Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, Genant HK, Cummings SR (2001) Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res 16:1108–1119

    Article  PubMed  CAS  Google Scholar 

  21. Langton CM, Pisharody S, Keyak JH (2009) Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Med Eng Phys 31:668–672

    Article  PubMed  CAS  Google Scholar 

  22. Cristofolini L, Schileo E, Juszczyk M, Taddei F, Martelli S, Viceconti M (2010) Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments. Philos Trans A Math Phys Eng Sci 368:2725–2763

    Article  PubMed  Google Scholar 

  23. Lee T, Pereira B, Chung YS, Oh HJ, Choi JB, Lim D, Shin J (2009) Novel approach of predicting fracture load in the proximal femur using non-invasive QCT imaging technique. Ann Biomed Eng 37:966–975

    Article  PubMed  Google Scholar 

  24. Pisharody S, Phillips R, Langton CM (2008) Sensitivity of proximal femoral stiffness and areal bone mineral density to changes in bone geometry and density. Proc Inst Mech Eng H 222:367–375

    PubMed  CAS  Google Scholar 

  25. Keyak JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23:165–173

    Article  PubMed  CAS  Google Scholar 

  26. Lotz JC, Cheal EJ, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models: part I—linear analysis. J Biomech Eng 113:353–360

    Article  PubMed  CAS  Google Scholar 

  27. Carpenter RD, Sigurdsson S, Zhao S et al (2011) Effects of age and sex on the strength and cortical thickness of the femoral neck. Bone 48:741–747

    Article  PubMed  CAS  Google Scholar 

  28. Cody DD, Hou FJ, Divine GW, Fyhrie DP (2000) Short term in vivo precision of proximal femoral finite element modeling. Ann Biomed Eng 28:408–414

    Article  PubMed  CAS  Google Scholar 

  29. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27:375–389

    Article  PubMed  CAS  Google Scholar 

  30. Keller TS (1994) Predicting the compressive mechanical behavior of bone. J Biomech 27:1159–1168

    Article  PubMed  CAS  Google Scholar 

  31. Keyak JH, Lee IY, Skinner HB (1994) Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. J Biomed Mater Res 28:1329–1336

    Article  PubMed  CAS  Google Scholar 

  32. Keyak JH, Lee IY, Nath DS, Skinner HB (1996) Postfailure compressive behavior of tibial trabecular bone in three anatomic directions. J Biomed Mater Res 31:373–378

    Article  PubMed  CAS  Google Scholar 

  33. Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC (1996) Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int 58:231–235

    PubMed  CAS  Google Scholar 

  34. Lee T, Choi J, Schafer BW, Segars WP, Eckstein F, Kuhn V, Beck TJ (2009) Assessing the susceptibility to local buckling at the femoral neck cortex to age-related bone loss. Ann Biomed Eng 37:1910–1920

    Article  PubMed  Google Scholar 

  35. Mayhew P, Thomas C, Clement J, Loveridge N, Beck TWB, Burgoyne C, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135

    Article  PubMed  Google Scholar 

  36. Allen MR, Hock JM, Burr DB (2004) Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 35:1003–1012

    Article  PubMed  CAS  Google Scholar 

  37. Delmas PD (2000) How does antiresorptive therapy decrease the risk of fracture in women with osteoporosis? Bone 27:1–3

    Article  PubMed  CAS  Google Scholar 

  38. Gluer CC, Cummings SR, Pressman A, Li J, Gluer K, Faulkner KG, Grampp S, Genant HK (1994) Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 9:671–677

    Article  PubMed  CAS  Google Scholar 

  39. Bell KL, Loveridge N, Power J, Garrahan N, Meggitt BF, Reeve J (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24:57–64

    Article  PubMed  CAS  Google Scholar 

  40. Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5:252–261

    Article  PubMed  CAS  Google Scholar 

  41. Johannesdottir F, Poole KE, Reeve J et al (2011) Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK Study. Bone 48:1268–1276

    Article  PubMed  Google Scholar 

  42. Beck TJ (2007) Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep 5:49–55

    Article  PubMed  Google Scholar 

  43. Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, Beck TJ, Reeve J (2001) Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16:1318–1328

    Article  PubMed  CAS  Google Scholar 

  44. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40:1745–1753

    Article  PubMed  Google Scholar 

  45. Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M (2007) Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech 40:2982–2989

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a research funding (# R397-000-129-290) from the Virtual Institute for the Study of Ageing (VISA), National University of Singapore (NUS), Singapore.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anitha, D., Kim, K.J., Lim, SK. et al. Implications of local osteoporosis on the efficacy of anti-resorptive drug treatment: a 3-year follow-up finite element study in risedronate-treated women. Osteoporos Int 24, 3043–3051 (2013). https://doi.org/10.1007/s00198-013-2424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2424-4

Keywords

Navigation