Skip to main content
Log in

Geometric indices of hip bone strength in obese, overweight, and normal-weight adolescent boys

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The aim of this study was to compare hip bone strength indices in obese, overweight, and normal-weight adolescent boys using hip structure analysis. After adjusting for weight, obese boys displayed lower intertrochanteric cross-sectional moment of inertia and femoral shaft cross-sectional moment of inertia and section modulus in comparison to normal-weight and overweight boys. This study suggests that in obese adolescent boys, femoral shaft bending strength is not adapted to the increased body weight.

Introduction

The influence of being obese or overweight on bone strength in adolescents remains controversial. The main aim of this study was to compare hip bone strength indices in obese, overweight, and normal-weight adolescent boys using hip structure analysis. The second aim of this study was to explore the influence of lean mass and fat mass on hip bone strength indices in the same population.

Methods

This study included 70 adolescent boys (25 obese, 25 normal weight, and 20 overweight). The three groups (obese, overweight, and normal weight) were matched for maturity (Tanner stage) and age. Body composition and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry (DXA). To evaluate hip bone strength, DXA scans were analyzed at the femoral neck (FN), the intertochanteric (IT), and the femoral shaft (FS) by the Hip Structure Analysis (HSA) program. Cross-sectional area (CSA), an index of axial compression strength, section modulus (Z), an index of bending strength, and cross-sectional moment of inertia (CSMI), an index of structural rigidity were measured from bone mass profiles.

Results

Body weight, lean mass, fat mass and BMI were significantly higher in obese and overweight boys in comparison to normal-weight boys (P < 0.05). Total hip (TH) BMD and femoral neck (FN) BMD were significantly higher in obese and overweight boys in comparison to normal-weight boys (P < 0.05). After adjusting for age or maturation index, obese and overweight boys displayed significantly higher TH and FN BMD, CSA, CSMI, and Z of the three sites (FN, IT, and FS) in comparison to normal-weight boys (P < 0.05). However, after adjusting for weight, obese boys displayed significantly lower IT CSMI and FS CSMI and Z in comparison to normal-weight and overweight boys (P < 0.05).

Conclusions

This study suggests that in obese adolescent boys, intertrochanteric structural rigidity and femoral shaft structural rigidity and bending strength are not adapted to the increased body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rizzoli R, Bonjour JP, Ferrari SL (2001) Osteoporosis, genetics and hormones. J Mol Endocrinol 26:79–94

    Article  PubMed  CAS  Google Scholar 

  2. Reid IR (2010) Fat and bone. Arch Biochem Biophys 503:20–27

    Article  PubMed  CAS  Google Scholar 

  3. El Hage R, Jacob C, Moussa E, Benhamou CL, Jaffré C (2009) Total body, lumbar spine and hip bone mineral density in overweight adolescent girls: decreased or increased? J Bone Miner Metab 27:629–633

    Article  PubMed  Google Scholar 

  4. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523

    PubMed  CAS  Google Scholar 

  5. Ellis KJ, Shypailo RJ, Wong WW, Abrams SA (2003) Bone mineral mass in overweight and obese children: diminished or enhanced? Acta Diabetol 40:S274–S277

    Article  PubMed  Google Scholar 

  6. De Schepper J, Van den Broeck M, Jonckheer M (1995) Study of lumbar spine bone mineral density in obese children. Acta Paediatr 84:313–315

    Article  PubMed  Google Scholar 

  7. Rocher E, Chappard C, Jaffré C, Benhamou CL, Courteix D (2008) Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass. J Bone Miner Metab 26:73–78

    Article  PubMed  Google Scholar 

  8. Manzoni P, Brambilla P, Pietrobelli A, Beccaria L, Bianchessi A, Mora S, Chiumello G (1996) Influence of body composition on bone mineral content in children and adolescents. Am J Clin Nutr 64:603–607

    PubMed  CAS  Google Scholar 

  9. Goulding A, Taylor RW, Jones IE, Manning PJ, Williams SM (2002) Spinal overload: a concern for obese children and adolescents? Osteoporos Int 13:835–840

    Article  PubMed  CAS  Google Scholar 

  10. Hasanoglu A, Bideci A, Cinaz P, Tumer L, Unal S (2000) Bone mineral density in childhood obesity. J Pediatr Endocrinol Metab 13:307–311

    Article  PubMed  CAS  Google Scholar 

  11. El Hage R, Moussa E, Jacob C (2010) Bone mineral content and density in obese, overweight and normal-weighted sedentary adolescent girls. J Adolesc Health 47:591–595

    Article  PubMed  Google Scholar 

  12. El Hage R, Jacob C, Moussa E, Groussard C, Pineau JC, Benhamou CL, Jaffré C (2009) Influence of the weight status on bone mineral content and bone mineral density in a group of Lebanese adolescent girls. Joint Bone Spine 76:680–684

    Article  PubMed  Google Scholar 

  13. El Hage R, Moussa E, Jacob C (2010) Femoral neck geometry in overweight and normal weight adolescent girls. J Bone Miner Metab 28:595–600

    Article  PubMed  Google Scholar 

  14. Ducher G, Bass S, Naughton GA, Eser P, Telford RD, Daly RM (2009) Overweight children have a greater proportion of fat mass relative to muscle mass in the upper limbs than in the lower limbs: implications for bone strength at the distal forearm. Am J Clin Nutr 90:1104–1111

    Article  PubMed  CAS  Google Scholar 

  15. Farr JN, Chen Z, Lisse JR, Lohman TG, Going SB (2010) Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls. Bone 46:977–984

    Article  PubMed  Google Scholar 

  16. Wetzsteon RJ, Petit MA, Macdonald HM, Hughes JM, Beck TJ, McKay HA (2008) Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Miner Res 23:1946–1953

    Article  PubMed  Google Scholar 

  17. Greene DA, Naughton GA, Briody JN, Kemp A, Woodhead H, Corrigan L (2005) Bone strength index in adolescent girls: does physical activity make a difference? Br J Sports Med 39:622–627

    Article  PubMed  CAS  Google Scholar 

  18. Petit MA, Beck TJ, Shults J, Zemel BS, Foster BJ, Leonard MB (2005) Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone 36:568–576

    Article  PubMed  Google Scholar 

  19. El Hage R, Courteix D, Benhamou CL, Jacob C, Jaffré C (2009) Relative importance of lean and fat mass on bone mineral density in a group of adolescent boys and girls. Eur J Appl Physiol 105:759–764

    Article  PubMed  Google Scholar 

  20. Fulton JP (1999) New guidelines for the prevention and treatment of osteoporosis. National Osteoporosis Foundation. Med Health RI 82:110–111

    CAS  Google Scholar 

  21. Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25:6–18

    Article  PubMed  CAS  Google Scholar 

  22. Martin RB, Burr DB (1984) Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech 3:195–201

    Article  Google Scholar 

  23. Forwood MR, Bailey DA, Beck TJ, Mirwald RL, Baxter-Jones AD, Uusi-Rasi K (2004) Sexual dimorphism of the femoral neck during the adolescent growth spurt: a structural analysis. Bone 35:973–981

    Article  PubMed  Google Scholar 

  24. Janz KF, Gilmore JM, Levy SM, Letuchy EM, Burns TL, Beck TJ (2007) Physical activity and femoral neck bone strength during childhood: the Iowa Bone Development Study. Bone 41:216–222

    Article  PubMed  Google Scholar 

  25. McKay HA, MacLean L, Petit M, Mackelvie-O’Brien K, Janssen P, Beck T, Khan KM (2005) “Bounce at the Bell”: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br J Sports Med 39:521–526

    Article  PubMed  CAS  Google Scholar 

  26. Cole TJ, Bellizzi MC, Flegal KM et al (2000) Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 320:1–6

    Article  Google Scholar 

  27. El Hage R, Jacob C, Moussa E, Youssef H, Groussard C, Pineau JC, Jaffré C (2008) Leptin, insulin, IGF-1 and bone mass in a group of sedentary adolescent girls. J Med Liban 56:220–225

    PubMed  Google Scholar 

  28. El Hage R, Moussa E, El Hage Z, Jacob C (2011) Birth weight a negative determinant of whole body bone mineral apparent density in a group of adolescent boys. J Clin Densitom 14:63–67

    Article  PubMed  Google Scholar 

  29. Beck T, Looker A, Ruff C, Sievanen H, Wahner H (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey (NHANES) dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304

    Article  PubMed  CAS  Google Scholar 

  30. Yates LB, Karasik D, Beck TJ, Cupples LA, Kiel DP (2007) Hip structural geometry in old-old age: similarities and differences between men and women. Bone 41:722–732

    Article  PubMed  Google Scholar 

  31. Crabtree N, Lunt M, Holt G, Kröger H, Burger H, Grazio S et al (2000) Hip geometry, bone mineral distribution, and bone strength in European men and women: the EPOS study. Bone 27:151–159

    Article  PubMed  CAS  Google Scholar 

  32. Khoo BC, Beck TJ, Qiao QH, Parakh P, Semanick L, Prince RL, Singer KP, Price RI (2005) In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone 37:112–121

    Article  PubMed  Google Scholar 

  33. Duke PM, Litt IF, Gross RT (1980) Adolescents’ self assessment of sexual maturation. Pediatrics 66:918–920

    PubMed  CAS  Google Scholar 

  34. Fardellone P, Sebert JL, Bouraga M, Bonidan O, Leclercq G, Doutrellot C, Bellony R (1991) Evaluation of the calcium content of diet by frequential self-questionnaire. Rev Rhum Mal Osteoartic 58:99–103

    PubMed  CAS  Google Scholar 

  35. El Hage R, Jacob C, Moussa E, Jaffré C, Benhamou CL (2009) Daily calcium intake and body mass index in a group of Lebanese adolescents. J Med Liban 57:253–257

    PubMed  Google Scholar 

  36. Deheeger M, Rolland-Cachera MF, Fontvieille AM (1997) Physical activity and body composition in 10 year old French children: linkages with nutritional intake? Int J Obes Relat Metab Disord 21:372–379

    Article  PubMed  CAS  Google Scholar 

  37. Artz E, Haqq A, Freemark M (2005) Hormonal and metabolic consequences of childhood obesity. Endocrinol Metab Clin North Am 34:643–658

    Article  PubMed  CAS  Google Scholar 

  38. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec 275:1081–1101

    Article  Google Scholar 

  39. Rauch F, Bailey D, Baxter-Jones A, Mirwald R, Faulkner R (2004) The muscle–bone unit during the pubertal growth spurt. Bone 34:771–775

    Article  PubMed  Google Scholar 

  40. Płudowski P, Lebiedowski M, Olszaniecka M, Marowska J, Matusik H, Lorenc RS (2006) Idiopathic juvenile osteoporosis–an analysis of the muscle-bone relationship. Osteoporos Int 17:1681–1690

    Article  PubMed  Google Scholar 

  41. Petit MA, Beck TJ, Kontulainen SA (2005) Examining the developing bone: what do we measure and how do we do it? J Musculoskelet Neuronal Interact 5:213–224

    PubMed  CAS  Google Scholar 

  42. Travison TG, Araujo AB, Esche GR, Beck TJ, McKinlay JB (2008) Lean mass and not fat mass is associated with male proximal femur strength. J Bone Miner Res 23:189–198

    Article  PubMed  Google Scholar 

  43. Bonjour JP, Chevalley T, Rizzoli R, Ferrari S (2007) Gene-environment interactions in the skeletal response to nutrition and exercise during growth. Med Sport Sci 51:64–80

    Article  PubMed  Google Scholar 

  44. Bréban S, Chappard C, Jaffre C, Khacef F, Briot K, Benhamou CL (2011) Positive influence of long-lasting and intensive weight-bearing physical activity on hip structure of young adults. J Clin Densitom 14:129–137

    Article  PubMed  Google Scholar 

  45. Petit MA, Beck TJ, Lin HM, Bentley C, Legro RS, Lloyd T (2004) Femoral bone structural geometry adapts to mechanical loading and is influenced by sex steroids: the Penn State Young Women’s Health Study. Bone 35:750–759

    Article  PubMed  CAS  Google Scholar 

  46. Petit MA, Beck TJ, Hughes JM, Lin HM, Bentley C, Lloyd T (2008) Proximal femur mechanical adaptation to weight gain in late adolescence: a six-year longitudinal study. J Bone Miner Res 23:180–188

    Article  PubMed  Google Scholar 

  47. Ferry B, Duclos M, Burt L, Therre P, Le Gall F, Jaffré C, Courteix D (2011) Bone geometry and strength adaptations to physical constraints inherent in different sports: comparison between elite female soccer players and swimmers. J Bone Miner Metab 29:342–351

    Article  PubMed  Google Scholar 

  48. Raman A, Lustig RH, Fitch M, Fleming SE (2009) Accuracy of self-assessed tanner staging against hormonal assessment of sexual maturation in overweight African-American children. J Pediatr Endocrinol Metab 22:609–622

    Article  PubMed  CAS  Google Scholar 

  49. Schaefer EJ, Augustin JL, Schaefer MM, Rasmussen H, Ordovas JM, Dallal GE, Dwyer JT (2000) Lack of efficacy of a food-frequency questionnaire in assessing dietary macronutrient intakes in subjects consuming diets of known composition. Am J Clin Nutr 71:746–751

    PubMed  CAS  Google Scholar 

  50. Bonnick SL (2007) HSA: beyond BMD with DXA. Bone (NY) 41:S9–S12

    Google Scholar 

  51. Beck TJ (2003) Measuring the structural strength of bones with dual-energy X-ray absorptiometry: principles, technical limitations, and future possibilities. Osteoporos Int 14:S81–S88

    Article  PubMed  Google Scholar 

  52. Gordon CM, Bachrach LK, Carpenter TO et al (2008) Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom 11:43–58

    Article  PubMed  Google Scholar 

  53. Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z (2009) Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women’s health initiative-observational study. J Bone Miner Res 24:1369–1379

    Article  PubMed  Google Scholar 

  54. Beck TJ, Kohlmeier LA, Petit MA et al (2011) Confounders in the association between exercise and femur bone in postmenopausal women. Med Sci Sports Exerc 43:80–89

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the research council of the University of Balamand, Lebanon.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. El Hage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Hage, R. Geometric indices of hip bone strength in obese, overweight, and normal-weight adolescent boys. Osteoporos Int 23, 1593–1600 (2012). https://doi.org/10.1007/s00198-011-1754-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1754-3

Keywords

Navigation