Skip to main content
Log in

QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

While dual energy X-ray absorptiometry (DXA) is considered the gold standard to evaluate fracture risk in vivo, in the present study, the quantitative computed tomography (QCT)-based finite element modeling has been found to provide a quantitative and significantly improved prediction of vertebral strength in vitro. This technique might be used in vivo considering however the much larger doses of radiation needed for QCT.

Introduction

Vertebral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. QCT-based finite element (FE) modeling is an engineering method to predict vertebral strength. The aim of this study was to compare the ability of FE and clinical diagnostic tools to predict vertebral strength in vitro using an improved testing protocol.

Methods

Thirty-seven vertebral sections were scanned with QCT and high resolution peripheral QCT (HR-pQCT). Bone mineral content (BMC), total BMD (tBMD), areal BMD from lateral (aBMD-lat), and anterior-posterior (aBMD-ap) projections were evaluated for both resolutions. Wedge-shaped fractures were then induced in each specimen with a novel testing setup. Nonlinear homogenized FE models (hFE) and linear micro-FE (μFE) were generated from QCT and HR-pQCT images, respectively. For experiments and models, both structural properties (stiffness, ultimate load) and material properties (apparent modulus and strength) were computed and compared.

Results

Both hFE and μFE models predicted material properties better than structural ones and predicted strength significantly better than aBMD computed from QCT and HR-pQCT (hFE: R² = 0.79, μFE: R² = 0.88, aBMD-ap: R² = 0.48−0.47, aBMD-lat: R² = 0.41−0.43). Moreover, the hFE provided reasonable quantitative estimations of the experimental mechanical properties without fitting the model parameters.

Conclusions

The QCT-based hFE method provides a quantitative and significantly improved prediction of vertebral strength in vitro when compared to simulated DXA. This superior predictive power needs to be verified for loading conditions that simulate even more the in vivo case for human vertebrae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733

    Article  PubMed  CAS  Google Scholar 

  2. Johnell O, Kanis J (2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16(Suppl 2):S3–S7

    Article  PubMed  Google Scholar 

  3. Jalava T et al (2003) Association between vertebral fracture and increased mortality in osteoporotic patients. J Bone Miner Res 18:1254–1260

    Article  PubMed  Google Scholar 

  4. Kanis JA, Oden A, Johnell O, De Laet C, Jonsson B (2004) Excess mortality after hospitalisation for vertebral fracture. Osteoporos Int 15:108–112

    Article  PubMed  Google Scholar 

  5. World Health Organisation. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis, Technical Report Series, vol. 843, 1994, WHO, Geneve.

  6. Kanis JA, Gluer CC (2000) An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int 11:192–202

    Article  PubMed  CAS  Google Scholar 

  7. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    Article  PubMed  CAS  Google Scholar 

  8. Kanis JA et al (2006) The use of multiple sites for the diagnosis of osteoporosis. Osteoporos Int 17:527–534

    Article  PubMed  CAS  Google Scholar 

  9. Griffith JF, Genant HK (2008) Bone mass and architecture determination: state of the art. Best Pract Res Clin Endocrinol Metab 22:737–764

    Article  PubMed  Google Scholar 

  10. Bergot C, Laval-Jeantet AM, Hutchinson K, Dautraix I, Caulin F, Genant HK (2001) A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int 68:74–82

    Article  PubMed  CAS  Google Scholar 

  11. Griffith JF, Engelke K, Genant HK (2010) Looking beyond bone mineral density: imaging assessment of bone quality. Ann NY Acad Sci 1192:45–56

    Article  PubMed  Google Scholar 

  12. Roux J, Wegrzyn J, Arlot M, Guyen O, Delmas P, Chapurlat R, Bouxsein M (2009) Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex-vivo study. J Bone Miner Res 25(2):356–361

    Article  Google Scholar 

  13. Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, Berger ML (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164:1108–1112

    Article  PubMed  Google Scholar 

  14. Hayes WC (1991) Biomechanics of cortical and trabecular bone: Implications for assessment of fracture risk. In: Hayes, WC (ed) Basic orthopaedics biomechanics, Raven press, pp. 93–142.

  15. Silva MJ (2007) Biomechanics of osteoporotic fractures. Injury 38(Suppl 3):S69–S76

    Article  PubMed  Google Scholar 

  16. Davison KS et al (2006) Bone strength: the whole is greater than the sum of its parts. Semin Arthritis Rheum 36:22–31

    Article  PubMed  Google Scholar 

  17. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(Suppl 3):S13–S18

    PubMed  Google Scholar 

  18. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17:319–336

    Article  PubMed  CAS  Google Scholar 

  19. McDonnell P, McHugh PE, O'Mahoney D (2007) Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng 35:170–189

    Article  PubMed  CAS  Google Scholar 

  20. Bouxsein ML (2003) Bone quality: where do we go from here? Osteoporos Int 14(Suppl 5):S118–S127

    Article  PubMed  Google Scholar 

  21. Augat P, Schorlemmer S (2006) The role of cortical bone and its microstructure in bone strength. Age Ageing 35 Suppl 2: ii27-ii31.

  22. Dong XN, Guo XE (2004) The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity 37(8):1281–1287

    Google Scholar 

  23. Turner CH (2002) Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int 13:97–104

    Article  PubMed  CAS  Google Scholar 

  24. Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15:32–40

    Article  PubMed  CAS  Google Scholar 

  25. Homminga J, Van-Rietbergen B, Lochmuller EM, Weinans H, Eckstein F, Huiskes R (2004) The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent "error" loads. Bone 34:510–516

    Article  PubMed  CAS  Google Scholar 

  26. Ulrich D, van Rietbergen B, Laib A, Ruegsegger P (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55–60

    Article  PubMed  CAS  Google Scholar 

  27. Matsuura M, Eckstein F, Lochmuller EM, Zysset PK (2007) The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech Model Mechanobiol 19:19

    Google Scholar 

  28. Wenzel TE, Schaffler MB, Fyhrie DP (1996) In vivo trabecular microcracks in human vertebral bone. Bone 19:89–95

    Article  PubMed  CAS  Google Scholar 

  29. Keaveny TM, Guo XE, Wachtel EF, McMahon TA, Hayes WC (1994) Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J Biomech 27:1127–1136

    Article  PubMed  CAS  Google Scholar 

  30. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694

    Article  PubMed  CAS  Google Scholar 

  31. Rincon-Kohli L, Zysset PK (2009) Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol 8:195–208

    Article  PubMed  Google Scholar 

  32. Zysset PK (2003) A review of morphology–elasticity relationships in human trabecular bone: theories and experiments. J Biomech 36:1469–1485

    Article  PubMed  Google Scholar 

  33. Helgason B, Perilli E, Schileo E, Taddei F, Brynjolfsson S, Viceconti M (2008) Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech (Bristol, Avon) 23:135–146

    Article  Google Scholar 

  34. Zysset PK, Rincon-Kohli L (2006) An alternative fabric-based yield and failure criterion for treabecular bone. In: Holzapfel G, Ogden R (eds) Mechanics of biological tissue. Springer, Berlin, pp 457–470

    Chapter  Google Scholar 

  35. Garcia D, Zysset PK, Charlebois M, Curnier A (2009) A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomech Model Mechanobiol 8:149–165

    Article  PubMed  Google Scholar 

  36. Imai K, Ohnishi I, Bessho M, Nakamura K (2006) Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine 31:1789–1794

    Article  PubMed  Google Scholar 

  37. Dall’Ara E, Schmidt R, Pahr D, Varga P, Chevalier Y, Patsch J, Kainberger F, Zysset P (2010) A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. J Biomech 43:2374–2380

    Article  PubMed  Google Scholar 

  38. Chevalier Y, Pahr D, Zysset PK (2009) The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body. J Biomech Eng 131:111003

    Article  PubMed  Google Scholar 

  39. Buckley JM, Loo K, Motherway J (2007) Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40:767–774

    Article  PubMed  Google Scholar 

  40. Silva MJ, Keaveny TM, Hayes WC (1998) Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. J Orthop Res 16:300–308

    Article  PubMed  CAS  Google Scholar 

  41. Zeinali A, Hashemi B, Akhlaghpoor S (2010) Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique. Phys Med 26:88–97

    Article  PubMed  Google Scholar 

  42. Cristofolini L, Schileo E, Juszczyk M, Taddei F, Martelli S, Viceconti M (2010) Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments. Philos Transact A Math Phys Eng Sci 368:2725–2763

    Article  PubMed  Google Scholar 

  43. Brianza SZ, D'Amelio P, Pugno N, Delise M, Bignardi C, Isaia G (2007) Allometric scaling and biomechanical behavior of the bone tissue: an experimental intraspecific investigation. Bone 40:1635–1642

    Article  PubMed  Google Scholar 

  44. Mulder L, Van Rietbergen B, Noordhoek N, Ito K (2010) Determination of in-vivo vertebral and femural trabecular morphology and stiffness using a flat-panel CT fluoroscopy approach. 17th congress of the European society of biomechanics, University of Edinburgh, UK, 4–8 July 2010.

  45. Pahr D, Dall’Ara E, Varga P, Zysset P (2010) Homogenized continuum-level finite element models predict experimental vertebral stiffness and strength with the same accuracy as μFE models. 17th congress of the European society of biomechanics, University of Edinburgh, UK, 4–8 July 2010.

  46. Varga P, Baumbach S, Pahr D, Zysset PK (2009) Validation of an anatomy specific finite element model of Colles’ fracture. J Biomech 42(11):1726–1731

    Article  PubMed  CAS  Google Scholar 

  47. Varga P, Pahr D, Dall'Ara E, Baumbach S, Pretterklieber M, Zysset P (2010) Calibrated HR-pQCT-based microFE models of ultra-distal radius sections provide outstanding prediction of experimental Colles' fracture load. 17th congress of the European society of biomechanics, University of Edinburgh, UK, 4–8 July 2010.

  48. Macneil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42:1203–1213

    Article  PubMed  Google Scholar 

  49. Mueller TL, Stauber M, Kohler T, Eckstein F, Muller R, van Lenthe GH (2009) Non-invasive bone competence analysis by high-resolution pQCT: an in vitro reproducibility study on structural and mechanical properties at the human radius. Bone 44:364–371

    Article  PubMed  Google Scholar 

  50. Pahr DH, Zysset PK (2009) From high-resolution CT data to finite element models: development of an integrated modular framework. Comput Meth Biomech Biomed Engin 12:45–57

    Article  Google Scholar 

  51. Burghardt AJ, Kazakia GJ, Link TM, Majumdar S (2009) Automated simulation of areal bone mineral density assessment in the distal radius from high-resolution peripheral quantitative computed tomography. Osteoporos Int 20:2017–2024

    Article  PubMed  CAS  Google Scholar 

  52. Chevalier Y, Charlebois M, Pahra D, Varga P, Heini P, Schneider E, Zysset P (2008) A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Comput Meth Biomech Biomed Engin 11:477–487

    Article  Google Scholar 

  53. Chevalier Y, Pahr D, Zysset PK (2009) The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body. J Biomech Eng 131(11):111003

    Article  PubMed  Google Scholar 

  54. Dall'Ara E, Varga P, Pahr D, Zysset P (2010) Local BMD calibration of human vertebrae QCT using registered micro-CT images. European Symposium on Calcified Tissues 2010, Glasgow, UK, 26–30 June 2010.

  55. Zysset PK, Curnier A (1996) A 3D damage model for trabecular bone based on fabric tensors. J Biomech 29:1549–1558

    PubMed  CAS  Google Scholar 

  56. Laib A, Hauselmann HJ, Ruegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329–337

    PubMed  CAS  Google Scholar 

  57. Arbenz P, van Lenthe GH, Mennel U, Mueller R, Sala M (2008) A scalable multi-level preconditioner for matrix-free-finite element analysis of human bone structures. Int J Numer Methods Eng 73:927–947

    Article  Google Scholar 

  58. Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol bullettin 87:245–251

    Article  Google Scholar 

  59. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge a grant for an interuniversity computer tomography network from the UniInfrastruktur Program III of the Austrian Ministry for Science and Research (bm: bwk). The authors gratefully acknowledge Dr. Reinhard Schmidt for having collected the samples.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Dall’Ara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dall’Ara, E., Pahr, D., Varga, P. et al. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos Int 23, 563–572 (2012). https://doi.org/10.1007/s00198-011-1568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1568-3

Keywords

Navigation