Skip to main content

Advertisement

Log in

Structural parameters of normal and osteoporotic human trabecular bone are affected differently by microCT image resolution

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study employed microCT to investigate whether image resolution affects bone structural parameters differently in healthy normal and osteoporotic trabecular bone. With increasing image voxel size, the originally detected differences between sample groups diminished. The results suggest that structural differences may not be reliably detected with clinical scanners.

Introduction

Structural parameters of bone reflect its health status, but are highly dependent on the image resolution. We hypothesized that image resolution affects bone structural parameters differently in normal and osteoporotic trabecular bone.

Methods

Human trabecular bone samples from the iliac crest and the knee were analyzed (normal n = 11, osteoporotic n = 15) using a high-resolution microCT (14 or 18 µm voxel sizes). Images were re-sampled to voxel sizes 1–16 times larger than the original image and thresholded with global or local adaptive algorithms. Absolute and normalized values of each structural parameter were calculated, and the effect of decreasing image resolution was compared between the normal and osteoporotic samples.

Results

Normal and osteoporotic samples had different (p < 0.05) absolute bone volume fractions. However, the normalized values showed that the osteoporotic samples were more prone to errors (p < 0.05) with increased voxel size. The absolute values of trabecular number, trabecular separation, degree of anisotropy, and structure model index were different between the groups at the original voxel size (p < 0.05), but at voxel sizes between 60 and 110 µm, those differences were no longer significant.

Conclusions

The results suggest that structural differences between osteoporotic and normal trabecular bone may not be reliably detected with clinical CT scanners providing image voxel sizes above 100 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cooper C (1999) Epidemiology of osteoporosis. Osteoporos Int 9(Suppl 2):S2–S8

    Article  PubMed  Google Scholar 

  2. Compston JE, Papapoulos SE, Blanchard F (1998) Report on osteoporosis in the European Community: current status and recommendations for the future. Working Party from European Union Member States. Osteoporos Int 8:531–534

    Article  CAS  PubMed  Google Scholar 

  3. Melton LJ 3rd, Atkinson EJ, O'Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8:1227–1233

    Article  PubMed  Google Scholar 

  4. Burr DB (2002) Bone material properties and mineral matrix contributions to fracture risk or age in women and men. J Musculoskelet Neuronal Interact 2:201–204

    CAS  PubMed  Google Scholar 

  5. Delmas PD, Seeman E (2004) Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. Bone 34:599–604

    Article  CAS  PubMed  Google Scholar 

  6. Astrand J, Thorngren KG, Tagil M (2006) One fracture is enough! Experience with a prospective and consecutive osteoporosis screening program with 239 fracture patients. Acta Orthop 77:3–8

    Article  PubMed  Google Scholar 

  7. World Health Organization Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organization, Geneva

    Google Scholar 

  8. Pasco JA, Seeman E, Henry MJ, Merriman EN, Nicholson GC, Kotowicz MA (2006) The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos Int 17:1404–1409

    Article  CAS  PubMed  Google Scholar 

  9. Greenspan S (2004) Osteoporosis. In: Andreoli TE (ed) Cecil essentials of medicine. W.B. Saunders, Philadelphia, pp 715–722

    Google Scholar 

  10. Fields AJ, Eswaran SK, Jekir MG, Keaveny TM (2009) Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J Bone Miner Res 24:1523–1530

    Article  PubMed  Google Scholar 

  11. Dalle Carbonare L, Giannini S (2004) Bone microarchitecture as an important determinant of bone strength. J Endocrinol Invest 27:99–105

    CAS  PubMed  Google Scholar 

  12. Newitt DC, Majumdar S, van Rietbergen B, von Ingersleben G, Harris ST, Genant HK, Chesnut C, Garnero P, MacDonald B (2002) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 13:6–17

    Article  CAS  PubMed  Google Scholar 

  13. Boyd SK, Davison P, Muller R, Gasser JA (2006) Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39:854–862

    Article  PubMed  Google Scholar 

  14. Carballido-Gamio J, Majumdar S (2006) Clinical utility of microarchitecture measurements of trabecular bone. Curr Osteoporos Rep 4:64–70

    Article  PubMed  Google Scholar 

  15. Ruegsegger P, Koller B, Muller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58:24–29

    Article  CAS  PubMed  Google Scholar 

  16. Campbell GM, Buie HR, Boyd SK (2008) Signs of irreversible architectural changes occur early in the development of experimental osteoporosis as assessed by in vivo micro-CT. Osteoporos Int 19:1409–1419

    Article  CAS  PubMed  Google Scholar 

  17. Gasser JA, Ingold P, Grosios K, Laib A, Hammerle S, Koller B (2005) Noninvasive monitoring of changes in structural cancellous bone parameters with a novel prototype micro-CT. J Bone Miner Metab 23:90–96, Suppl

    Article  PubMed  Google Scholar 

  18. Thomsen JS, Laib A, Koller B, Prohaska S, Mosekilde L, Gowin W (2005) Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. J Microsc 218:171–179

    Article  CAS  PubMed  Google Scholar 

  19. Chappard D, Retailleau-Gaborit N, Legrand E, Basle MF, Audran M (2005) Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 20:1177–1184

    Article  PubMed  Google Scholar 

  20. Akhter MP, Lappe JM, Davies KM, Recker RR (2007) Transmenopausal changes in the trabecular bone structure. Bone 41:111–116

    Article  CAS  PubMed  Google Scholar 

  21. Brouwers JE, Lambers FM, Gasser JA, van Rietbergen B, Huiskes R (2008) Bone degeneration and recovery after early and late bisphosphonate treatment of ovariectomized wistar rats assessed by in vivo micro-computed tomography. Calcif Tissue Int 82:202–211

    Article  CAS  PubMed  Google Scholar 

  22. Kothari M, Keaveny TM, Lin JC, Newitt DC, Genant HK, Majumdar S (1998) Impact of spatial resolution on the prediction of trabecular architecture parameters. Bone 22:437–443

    Article  CAS  PubMed  Google Scholar 

  23. Muller R, Koller B, Hildebrand T, Laib A, Gianolini S, Ruegsegger P (1996) Resolution dependency of microstructural properties of cancellous bone based on three-dimensional mu-tomography. Technol Health Care 4:113–119

    CAS  PubMed  Google Scholar 

  24. Sode M, Burghardt AJ, Nissenson RA, Majumdar S (2008) Resolution dependence of the non-metric trabecular structure indices. Bone 42:728–736

    Article  PubMed  Google Scholar 

  25. Kim DG, Christopherson GT, Dong XN, Fyhrie DP, Yeni YN (2004) The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone. Bone 35:1375–1382

    Article  PubMed  Google Scholar 

  26. Waarsing JH, Day JS, Weinans H (2004) An improved segmentation method for in vivo microCT imaging. J Bone Miner Res 19:1640–1650

    Article  PubMed  Google Scholar 

  27. Kazakia GJ, Hyun B, Burghardt AJ, Krug R, Newitt DC, de Papp AE, Link TM, Majumdar S (2008) In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and high-field MR imaging. J Bone Miner Res 23:463–474

    Article  PubMed  Google Scholar 

  28. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  CAS  PubMed  Google Scholar 

  29. Mueller TL, Stauber M, Kohler T, Eckstein F, Muller R, van Lenthe GH (2009) Non-invasive bone competence analysis by high-resolution pQCT: an in vitro reproducibility study on structural and mechanical properties at the human radius. Bone 44:364–371

    Article  PubMed  Google Scholar 

  30. Boutroy S, Van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD (2008) Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23:392–399

    Article  PubMed  Google Scholar 

  31. Diederichs G, Link T, Marie K, Huber M, Rogalla P, Burghardt A, Majumdar S, Issever A (2008) Feasibility of measuring trabecular bone structure of the proximal femur using 64-slice multidetector computed tomography in a clinical setting. Calcif Tissue Int 83:332–341

    Article  CAS  PubMed  Google Scholar 

  32. Tamminen I, Aula A, Isaksson H, Jurvelin JS, Kröger H (2009) Reproducibility and agreement of microCT and histomorphometry depends on the metabolic status of human trabecular bone. Transactions of 55th annual meeting of the Orthopaedic Research Society, Las Vegas, Nevada, USA

  33. Hakulinen MA, Day JS, Toyras J, Weinans H, Jurvelin JS (2006) Ultrasonic characterization of human trabecular bone microstructure. Phys Med Biol 51:1633–1648

    Article  PubMed  Google Scholar 

  34. Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1:15–23

    Article  PubMed  Google Scholar 

  35. Odgaard A, Kabel J, van Rietbergen B, Dalstra M, Huiskes R (1997) Fabric and elastic principal directions of cancellous bone are closely related. J Biomech 30:487–495

    Article  CAS  PubMed  Google Scholar 

  36. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    CAS  PubMed  Google Scholar 

  37. Chappard C, Marchadier A, Benhamou L (2008) Interindividual and intraspecimen variability of 3-D bone microarchitectural parameters in iliac crest biopsies imaged by conventional micro-computed tomography. J Bone Miner Metab 26:506–513

    PubMed  Google Scholar 

  38. Eckstein F, Matsuura M, Kuhn V, Priemel M, Muller R, Link TM, Lochmuller EM (2007) Sex differences of human trabecular bone microstructure in aging are site-dependent. J Bone Miner Res 22:817–824

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the Academy of Finland (128863), Kuopio University Hospital (EVO 5231), and the European Commission (BONEQUAL-219980) is gratefully acknowledged.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Isaksson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaksson, H., Töyräs, J., Hakulinen, M. et al. Structural parameters of normal and osteoporotic human trabecular bone are affected differently by microCT image resolution. Osteoporos Int 22, 167–177 (2011). https://doi.org/10.1007/s00198-010-1219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1219-0

Keywords

Navigation