Skip to main content

Advertisement

Log in

Association of increased active PTH(1–84) fraction with decreased GFR and serum Ca in predialysis CRF patients: modulation by serum 25-OH-D

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

As the serum calcium and glomerular filtration rate decreased, the proportion of active PTH(1–84) molecules in PTH immunoreactivity increased in serum from predialysis uremic patients, particularly those with vitamin D insufficiency.

Introduction

The PTH(1–84) fraction was altered in predialysis patients with chronic renal failure (CRF).

Methods

Serum PTH in predialysis CRF patients without any medication was measured by PTH(1–84)-specific whole PTH assay and intact PTH assay cross-reacting with N-truncated PTH.

Results

In CRF patients, the glomerular filtration rate (GFR) correlated positively with serum Ca and 1,25-dihydroxyvitamin D (1,25(OH)2D), and inversely with serum Pi, log intact PTH, and log whole PTH. In multiple regression analysis, including age, gender, body mass index, GFR, Ca, and Pi and 1,25(OH)2D as independent variables, serum Ca and GFR associated significantly with serum log whole PTH and intact PTH. Serum log whole PTH/intact PTH ratio, which increased as serum Ca and GFR decreased, retained a negative correlation in those with serum 25-hydroxyvitamin D levels below 20 ng/ml, but not in those above 20 ng/ml. The ratio also correlated positively with serum log tartrate-resistant acid-phosphatase-5b, log cross-linked N-telopeptide of type-I collagen, and log bone alkaline-phosphatase.

Conclusion

As GFR declined with suppression of serum Ca, the proportion of active PTH molecules increased in predialysis CRF patients, particularly those with vitamin D insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. John MR, Goodman WG, Gao P, Cantor TL, Salusky IB, Juppner H (1999) A novel immunoradiometric assay detects full-length human PTH but not amino-terminally truncated fragments: implications for PTH measurements in renal failure. J Clin Endocrinol Metab 84:4287–4290

    Article  PubMed  CAS  Google Scholar 

  2. Lepage R, Roy L, Brossard JH, Rousseau L, Dorais C, Lazure C, D’Amour P (1998) A non-(1–84) circulating parathyroid hormone (PTH) fragment interferes significantly with intact PTH commercial assay measurements in uremic samples. Clin Chem 44:805–809

    PubMed  CAS  Google Scholar 

  3. Brossard JH, Lepage R, Cardinal H, Roy L, Rousseau L, Dorais C, D’Amour P (2000) Influence of glomerular filtration rate on non-(1–84) parathyroid hormone (PTH) detected by intact PTH assays. Clin Chem 46:697–703

    PubMed  CAS  Google Scholar 

  4. Brossard JH, Cloutier M, Roy L, Lepage R, Gascon-Barre M, D’Amour P (1996) Accumulation of a non-(1–84) molecular form of parathyroid hormone (PTH) detected by intact PTH assay in renal failure: importance in the interpretation of PTH values. J Clin Endocrinol Metab 81:3923–3929

    Article  PubMed  CAS  Google Scholar 

  5. Inaba M, Okuno S, Imanishi Y, Ueda M, Yamakawa T, Ishimura E, Nishizawa Y (2005) Significance of Bio-intact PTH(1–84) assay in hemodialysis patients. Osteoporos Int 16:517–525

    Article  PubMed  CAS  Google Scholar 

  6. Kawata T, Imanishi Y, Kobayashi K, Onoda N, Takemoto Y, Tahara H, Okuno S, Ishimura E, Miki T, Ishikawa T, Inaba M, Nishizawa Y (2005) Direct in vitro evidence of extracellular Ca2+-induced amino-terminal truncation of human parathyroid hormone (1–84) by human parathyroid cells. J Clin Endocrinol Metab 90:5774–5778

    Article  PubMed  CAS  Google Scholar 

  7. Inaba M, Terada M, Nishizawa Y, Shioi A, Ishimura E, Otani S, Morii H (1999) Protective effect of an aldose reductase inhibitor against bone loss in galactose-fed rats: possible involvement of the polyol pathway in bone metabolism. Metabolismo 48:904–909

    CAS  Google Scholar 

  8. Ishimura E, Nishizawa Y, Inaba M, Matsumoto N, Emoto M, Kawagishi T, Shoji S, Okuno S, Kim M, Miki T, Morii H (1999) Serum levels of 1,25-dihydroxyvitamin D, 24,25-dihydroxyvitamin D, and 25-hydroxyvitamin D in nondialyzed patients with chronic renal failure. Kidney Int 55:1019–1027

    Article  PubMed  CAS  Google Scholar 

  9. (1992) The Modification of Diet in Renal Disease Study: design, methods, and results from the feasibility study. Am J Kidney Dis 20:18–33

  10. Babazono T, Hanai K, Suzuki K, Kiuchi Y, Inoue A, Tanaka M, Tanaka N, Hase M, Ishii A, Iwamoto Y (2006) Lower haemoglobin level and subsequent decline in kidney function in type 2 diabetic adults without clinical albuminuria. Diabetologia 49:1387–1393

    Article  PubMed  CAS  Google Scholar 

  11. Inaba M, Nishizawa Y, Mita K, Kumeda Y, Emoto M, Kawagishi T, Ishimura E, Nakatsuka K, Shioi A, Morii H (1999) Poor glycemic control impairs the response of biochemical parameters of bone formation and resorption to exogenous 1,25-dihydroxyvitamin D3 in patients with type 2 diabetes. Osteoporos Int 9:525–531

    Article  PubMed  CAS  Google Scholar 

  12. Kumeda Y, Inaba M, Tahara H, Kurioka Y, Ishikawa T, Morii H, Nishizawa Y (2000) Persistent increase in bone turnover in Graves’ patients with subclinical hyperthyroidism. J Clin Endocrinol Metab 85:4157–4161

    Article  PubMed  CAS  Google Scholar 

  13. Ohashi T, Igarashi Y, Mochizuki Y, Miura T, Inaba N, Katayama K, Tomonaga T, Nomura F (2007) Development of a novel fragments absorbed immunocapture enzyme assay system for tartrate-resistant acid phosphatase 5b. Clin Chim Acta 376:205–212

    Article  PubMed  CAS  Google Scholar 

  14. Gertz BJ, Clemens JD, Holland SD, Yuan W, Greenspan S (1998) Application of a new serum assay for type I collagen cross-linked N-telopeptides: assessment of diurnal changes in bone turnover with and without alendronate treatment. Calcif Tissue Int 63:102–106

    Article  PubMed  CAS  Google Scholar 

  15. Clemens JD, Herrick MV, Singer FR, Eyre DR (1997) Evidence that serum NTx (collagen-type I N-telopeptides) can act as an immunochemical marker of bone resorption. Clin Chem 43:2058–2063

    PubMed  CAS  Google Scholar 

  16. Gomez B Jr, Ardakani S, Ju J, Jenkins D, Cerelli MJ, Daniloff GY, Kung VT (1995) Monoclonal antibody assay for measuring bone-specific alkaline phosphatase activity in serum. Clin Chem 41:1560–1566

    PubMed  CAS  Google Scholar 

  17. Gao P, Scheibel S, D’Amour P, John MR, Rao SD, Schmidt-Gayk H, Cantor TL (2001) Development of a novel immunoradiometric assay exclusively for biologically active whole parathyroid hormone 1–84: implications for improvement of accurate assessment of parathyroid function. J Bone Miner Res 16:605–614

    Article  PubMed  CAS  Google Scholar 

  18. Souberbielle JC, Boutten A, Carlier MC, Chevenne D, Coumaros G, Lawson-Body E, Massart C, Monge M, Myara J, Parent X, Plouvier E, Houillier P (2006) Inter-method variability in PTH measurement: implication for the care of CKD patients. Kidney Int 70:345–350

    Article  PubMed  CAS  Google Scholar 

  19. Inaba M, Nakatsuka K, Imanishi Y, Watanabe M, Mamiya Y, Ishimura E, Nishizawa Y (2004) Technical and clinical characterization of the Bio-PTH (1–84) immunochemiluminometric assay and comparison with a second-generation assay for parathyroid hormone. Clin Chem 50:385–390

    Article  PubMed  CAS  Google Scholar 

  20. Reichel H, Esser A, Roth HJ, Schmidt-Gayk H (2003) Influence of PTH assay methodology on differential diagnosis of renal bone disease. Nephrol Dial Transplant 18:759–768

    Article  PubMed  CAS  Google Scholar 

  21. Roth HJ (2000) Elecsys parathyroid hormone (PTH) not detecting the large PTH fragment hPTH (7–84)? Clin Lab 46:295–299

    PubMed  CAS  Google Scholar 

  22. Hiroyuki Y, Motomiya Y, Uchida K, Akizawa T (2002) Development and clinical application of Whole PTH (PTH1-84) kit. Jpn J Med Pharm Sci 48:243–247

    Google Scholar 

  23. Inomata K, Yamashita H, Yamamoto A, Yukishita M, Adachi M (2004) Influence of 25-hydroxyvitamin D concentration on the reference range of intact PTH. Osteoporosis Jpn 12:449–456

    Google Scholar 

  24. Harinarayan CV (2005) Prevalence of vitamin D insufficiency in postmenopausal south Indian women. Osteoporos Int 16:397–402

    Article  PubMed  CAS  Google Scholar 

  25. Saquib N, von Muhlen D, Garland CF, Barrett-Connor E (2006) Serum 25-hydroxyvitamin D, parathyroid hormone, and bone mineral density in men: the Rancho Bernardo study. Osteoporos Int 17:1734–1741

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto T, Ozono K, Shima M, Yamaoka K, Okada S (1998) 24R,25-dihydroxyvitamin D3 increases cyclic GMP contents, leading to an enhancement of osteocalcin synthesis by 1,25-dihydroxyvitamin D3 in cultured human osteoblastic cells. Exp Cell Res 244:71–76

    Article  PubMed  CAS  Google Scholar 

  27. Moosgaard B, Vestergaard P, Heickendorff L, Melsen F, Christiansen P, Mosekilde L (2006) Plasma 25-hydroxyvitamin D and not 1,25-dihydroxyvitamin D is associated with parathyroid adenoma secretion in primary hyperparathyroidism: a cross-sectional study. Eur J Endocrinol 155:237–244

    Article  PubMed  CAS  Google Scholar 

  28. Eastwood JB, Stamp TC, De Wardener HE, Bordier PJ, Arnaud CD (1977) The effect of 25-hydroxy vitamin D3 in the osteomalacia of chronic renal failure. Clin Sci Mol Med 52:499–508

    PubMed  CAS  Google Scholar 

  29. Ghazali A, Fardellone P, Pruna A, Atik A, Achard JM, Oprisiu R, Brazier M, Remond A, Moriniere P, Garabedian M, Eastwood J, Fournier A (1999) Is low plasma 25-(OH)vitamin D a major risk factor for hyperparathyroidism and Looser’s zones independent of calcitriol? Kidney Int 55:2169–2177

    Article  PubMed  CAS  Google Scholar 

  30. Tsukamoto Y, Watanabe T, Nakagami T, Morishita K (2003) Effect of treatment with oral calcitriol on calcium metabolism and fasting serum 25(OH)- or 1,25(OH)2-vitamin D level in Japanese postmenopausal women. Endocr J 50:681–687

    Article  PubMed  CAS  Google Scholar 

  31. Matsumoto T, Ikeda K, Yamato H, Morita K, Ezawa I, Fukushima M, Nishii Y, Ogata E (1988) Effect of 24,25-dihydroxyvitamin D3 on 1,25-dihydroxyvitamin D3 metabolism in calcium-deficient rats. Biochem J 250:671–677

    PubMed  CAS  Google Scholar 

  32. Ritter CS, Armbrecht HJ, Slatopolsky E, Brown AJ (2006) 25-Hydroxyvitamin D(3) suppresses PTH synthesis and secretion by bovine parathyroid cells. Kidney Int 70:654–659

    Article  PubMed  CAS  Google Scholar 

  33. Kates DM, Sherrard DJ, Andress DL (1997) Evidence that serum phosphate is independently associated with serum PTH in patients with chronic renal failure. Am J Kidney Dis 30:809–813

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Inaba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurajoh, M., Inaba, M., Yamada, S. et al. Association of increased active PTH(1–84) fraction with decreased GFR and serum Ca in predialysis CRF patients: modulation by serum 25-OH-D. Osteoporos Int 19, 709–716 (2008). https://doi.org/10.1007/s00198-007-0554-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0554-2

Keywords

Navigation