Skip to main content

Advertisement

Log in

Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Magnetic resonance imaging (MRI) is a promising medical imaging technique that we used to assess femoral neck cortical geometry.

Objectives

Our primary objective was to assess whether cortical bone in the femoral neck assessed by MRI was associated with failure load in a simulated sideways fall, with and without adjustment for total bone size. Our secondary objective was to assess the reliability of the MRI measurements.

Materials and methods

We imaged 34 human cadaveric proximal femora using MRI and dual-energy X-ray absorptiometry (DXA). MRI measurements of cross-sectional geometry at the femoral neck were the cortical cross-sectional area (CoCSAMRI), second area moment of inertia (x axis; IxMRI), and section modulus (x axis; ZxMRI). DXA images were analyzed with the standard Hologic protocol. From DXA, we report the areal bone mineral density (aBMDDXA) in the femoral neck and trochanteric subregions of interest. The femora were loaded to failure at 100 mm/s in a sideways fall configuration (15° internal rotation, 10° adduction).

Results and observations

Failure load (N) was the primary outcome. We observed that the femoral neck CoCSAMRI and IxMRI were strongly associated with failure load (r 2=0.46 and 0.48, respectively). These associations were similar to those between femoral neck aBMD and failure load (r 2=0.40), but lower than the associations between trochanteric aBMD and failure load (r 2=0.70).

Conclusion

We report that MRI holds considerable promise for measuring cortical bone geometry in the femoral neck and for predicting strength at the proximal femur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Enisa Shevroja, Jean-Yves Reginster, … Nicholas C. Harvey

References

  1. Kannus P, Niemi S, Parkkari J, Palvanen M, Vuori I, Jarvinen M (1999) Hip fractures in Finland between 1970 and 1997 and predictions for the future. Lancet 353(9155):802–805

    Article  PubMed  CAS  Google Scholar 

  2. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767

    Article  PubMed  Google Scholar 

  3. Cooper C, Campion G, Melton LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2(6):285–289

    Article  PubMed  CAS  Google Scholar 

  4. Papadimitropoulos EA, Coyte PC, Josse RG, Greenwood CE (1997) Current and projected rates of hip fracture in Canada. CMAJ 157(10):1357–1363

    PubMed  CAS  Google Scholar 

  5. Hayes WC, Myers ER, Robinovitch SN, Van Den Kroonenberg A, Courtney AC, McMahon TA (1996) Etiology and prevention of age-related hip fractures. Bone 18(1 Suppl):77S–86S

    Article  PubMed  CAS  Google Scholar 

  6. Chesnut III CH, Skag A, Christiansen C, Recker R, Stakkestad JA, Hoiseth A, Felsenberg D, Huss H, Gilbride J, Schimmer RC, Delmas PD (2004) Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19(8):1241–1249

    Article  CAS  Google Scholar 

  7. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348(9041):1535–1541

    Article  PubMed  CAS  Google Scholar 

  8. Cheng XG, Lowet G, Boonen S, Nicholson PH, Brys P, Nijs J, Dequeker J (1997) Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 20(3):213–218

    Article  PubMed  CAS  Google Scholar 

  9. Heinonen A, McKay HA, Whittall KP, Forster BB, Khan KM (2001) Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone 29(4):388–392

    Article  PubMed  CAS  Google Scholar 

  10. Woodhead HJ, Kemp AF, Blimkie CJR, Briody JN, Duncan CS, Thompson M, Lam A, Howman-Giles R, Cowell CT (2001) Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy X-ray absorptiometry. J Bone Miner Res 16(12):2251–2259

    Article  PubMed  CAS  Google Scholar 

  11. Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 16(11):1307–1314

    Article  PubMed  Google Scholar 

  12. Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366(9480):129–135

    Article  PubMed  Google Scholar 

  13. Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt BF, Reeve J (1999) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14(1):111–119

    Article  PubMed  CAS  Google Scholar 

  14. Hologic, Inc. (1996) Hologic QDR-4500 user’s guide. Hologic, Inc., Waltham, Massachusetts

  15. Courtney AC, Wachtel EF, Myers ER, Hayes WC (1995) Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am 77(3):387–395

    PubMed  CAS  Google Scholar 

  16. Lochmüller EM, Groll O, Kuhn V, Eckstein F (2002) Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30(1):207–216

    Article  PubMed  Google Scholar 

  17. Lochmüller EM, Muller R, Kuhn V, Lill CA, Eckstein F (2003) Can novel clinical densitometric techniques replace or improve DXA in predicting bone strength in osteoporosis at the hip and other skeletal sites? J Bone Miner Res 18(5):906–912

    Article  PubMed  Google Scholar 

  18. Eckstein F, Wunderer C, Boehm H, Kuhn V, Priemel M, Link TM, Lochmüller EM (2004) Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur. J Bone Miner Res 19(3):379–385

    Article  PubMed  Google Scholar 

  19. Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC (1996) Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int 58(4):231–235

    PubMed  CAS  Google Scholar 

  20. Robinovitch SN, Hayes WC, McMahon TA (1991) Prediction of femoral impact forces in falls on the hip. J Biomech Eng 113(4):366–374

    Article  PubMed  CAS  Google Scholar 

  21. Robinovitch SN, Hayes WC, McMahon TA (1995) Energy-shunting hip padding system attenuates femoral impact force in a simulated fall. J Biomech Eng 117(4):409–413

    Article  PubMed  CAS  Google Scholar 

  22. Zuckerman JD (1996) Hip fracture. N Engl J Med 334(23):1519–1525

    Article  PubMed  CAS  Google Scholar 

  23. Evans EM (1949) The treatment of trochanteric fractures of the femur. J Bone Joint Surg Br 31B(2):190–203

    CAS  Google Scholar 

  24. Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5(4):262–270

    Article  PubMed  CAS  Google Scholar 

  25. Fox KM, Cummings SR, Williams E, Stone K (2000) Femoral neck and intertrochanteric fractures have different risk factors: a prospective study. Osteoporos Int 11(12):1018–1023

    Article  PubMed  CAS  Google Scholar 

  26. Gnudi S, Ripamonti C, Lisi L, Fini M, Giardino R, Giavaresi G (2002) Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int 13(1):69–73

    Article  PubMed  CAS  Google Scholar 

  27. Duboeuf F, Hans D, Schott AM, Kotzki PO, Favier F, Marcelli C, Meunier PJ, Delmas PD (1997) Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS Study. J Bone Miner Res 12(11):1895–1902

    Article  PubMed  CAS  Google Scholar 

  28. Weber TG, Yang KH, Woo R, Fitzgerald RJ (1992) Proximal femur strength: correlation of the rate of loading and bone mineral density. Adv Bioeng 22:111–114

    Google Scholar 

  29. Courtney AC, Wachtel EF, Myers ER, Hayes WC (1994) Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 55(1):53–58

    Article  PubMed  CAS  Google Scholar 

  30. McKay HA, Sievanen H, Petit MA, MacKelvie KJ, Forkheim KM, Whittall KP, Forster BB, Macdonald H (2004) Application of magnetic resonance imaging to evaluation of femoral neck structure in growing girls. J Clin Densitom 7(2):161–168

    Article  PubMed  Google Scholar 

  31. Bousson V, Le Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17(6):855–864

    Article  PubMed  CAS  Google Scholar 

  32. Turner CH (2005) The biomechanics of hip fracture. Lancet 366(9480):98–99

    Article  PubMed  Google Scholar 

  33. Bolotin HH, Sievanen H (2001) Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility. J Bone Miner Res 16(5):799–805

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. B. Forster for X-ray screening, Dr. A. MacKay for MRI protocol development, S. Renneberg and T. Harris for MRI data acquisition, B. Ko for MRI inter-rater reliability analyses, C. Tang for assistance with mechanical testing, and Drs. K. Khan and D. Cooper for manuscript review. This study was supported by an Establishment Grant from the Michael Smith Foundation for Health Research (MSFHR). S. Manske was supported by the MSFHR and the Natural Sciences and Engineering Research Council of Canada, Dr. Liu-Ambrose was supported by the MSFHR and the Canadian Institutes of Health Research (CIHR) and Dr. McKay is an MSFHR Senior Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. McKay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manske, S.L., Liu-Ambrose, T., de Bakker, P.M. et al. Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength. Osteoporos Int 17, 1539–1545 (2006). https://doi.org/10.1007/s00198-006-0162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0162-6

Keywords

Navigation