Skip to main content
Log in

Gender differences in trabecular bone architecture of the distal radius assessed with magnetic resonance imaging and implications for mechanical competence

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

High-resolution magnetic resonance imaging (hrMRI) has recently made it possible to evaluate trabecular bone structure in vivo. Despite obvious gender differences in fracture incidence at the distal radius, little is known about gender differences in trabecular bone microarchitecture and its relationship to the structural strength of the forearm. The aim of this study was to determine trabecular bone structure in the distal radius of elderly women and men and its correlation with failure loads of the distal radius as determined in a fall configuration. Specifically, we tested the hypotheses that structural indices differ between women and men and that they offer information that is independent from BMD for predicting structural strength. Intact right arms were obtained from 73 formalin-fixed cadavers (age 80±11 years, 43 women, 30 men). Trabecular structural indices (apparent bone volume fraction [app. BV/TV], trabecular number [app. Tb.N], trabecular separation [app. Tb.Sp], trabecular thickness [app. Tb.Th] and fractal dimension [Frac.Dim]) were assessed in the distal metaphysis, using hrMRI with 156 µm in-plane resolution and proprietary digital image analysis, while BMD was measured with dual X-ray absorptiometry (DXA). Women displayed significantly lower BMD (−29.8%, p <0.001), app. BV/TV (−8.2%, p <0.05) and app. Tb.Th (−10.2%, p <0.001) than men, whereas app. Tb.N, app. Tb.Sp. and fractal dimension did not differ significantly. Structural parameters differed between normal and osteopenic women (BV/TV: −11%, p <0.01; Tb.Th: −8%, p <0.001) and between normal and osteoporotic women BV/TV: −21%, p <0.001; Tb.Th: −16%, p <0.001). App. BV/TV, app. Tb.Th and fractal dimension provided information independent from BMD in the prediction of radial failure loads in multiple regression models. These findings imply that it should be of clinical interest to monitor both bone mass and trabecular microstructure for predicting osteoporotic fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jensen GF, Christiansen C, Boesen J, Hegedus V, Transbol I (1982) Epidemiology of postmenopausal spinal and long bone fractures. A unifying approach to postmenopausal osteoporosis. Clin Orthop 166:75–81

    Google Scholar 

  2. Owen RA, Melton LJ III, Johnson KA, Ilstrup DM, Riggs BL (1982) Incidence of Colles’ fracture in a North American community. Am J Public Health 72:605–607

    Google Scholar 

  3. Cuddihy MT, Gabriel SE, Crowson CS, O’Fallon WM, Melton LJ III (1999) Forearm fractures as predictors of subsequent osteoporotic fractures. Osteoporos Int 9:469–475

    Google Scholar 

  4. Spadaro JA, Werner FW, Brenner RA, Fortino MD, Fay LA, Edwards WT (1994) Cortical and trabecular bone contribute strength to the osteopenic distal radius. J Orthop Res 12:211–218

    Google Scholar 

  5. Augat P, Iida H, Jiang Y, Diao E, Genant HK (1998) Distal radius fractures: mechanisms of injury and strength prediction by bone mineral assessment. J Orthop Res 16:629–635

    Google Scholar 

  6. Gordon CL, Webber CE, Nicholson PS (1998) Relation between image-based assessment of distal radius trabecular structure and compressive strength. Can Assoc Radiol J 49:390–397

    Google Scholar 

  7. Wigderowitz CA, Paterson CR, Dashti H, McGurty D, Rowley DI (2000) Prediction of bone strength from cancellous structure of the distal radius: can we improve on DXA? Osteoporos Int 11:840–846

    Article  Google Scholar 

  8. Wu C, Hans D, He Y, Fan B, Njeh CF, Augat P, Richards J, Genant HK (2000) Prediction of bone strength of distal forearm using radius bone mineral density and phalangeal speed of sound. Bone 26:529–533

    Article  Google Scholar 

  9. Lochmüller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17:1629–1638

    PubMed  Google Scholar 

  10. Hudelmaier M, Kuhn V, Lochmuller EM, Well H, Priemel M, Link TM, Eckstein F (2004) Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)? Osteoporos Int 15:375–381

    CAS  PubMed  Google Scholar 

  11. Muller ME, Webber CE, Bouxsein ML (2003) Predicting the failure load of the distal radius. Osteoporos Int 14:345–352

    Article  Google Scholar 

  12. Ouyang X, Selby K, Lang P, Engelke K, Klifa C, Fan B, Zucconi F, Hottya G, Chen M, Majumdar S, Genant HK (1997) High-resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements. Calcif Tissue Int 60:139–147

    Article  CAS  PubMed  Google Scholar 

  13. Link TM, Majumdar S, Grampp S, Guglielmi G, van Kuijk C, Imhof H, Glueer C, Adams JE (1999) Imaging of trabecular bone structure in osteoporosis. Eur Radiol 9:1781–1788

    Article  Google Scholar 

  14. Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10:231–239

    Article  CAS  PubMed  Google Scholar 

  15. Newitt DC, Majumdar S, van RB, von IG, Harris ST, Genant HK, Chesnut C, Garnero P, MacDonald B (2002) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 13:6–17

    Article  CAS  PubMed  Google Scholar 

  16. Laib A, Newitt DC, Lu Y, Majumdar S (2002) New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 13:130–136

    Article  Google Scholar 

  17. Majumdar S, Newitt D, Mathur A, Osman D, Gies A, Chiu E, Lotz J, Kinney J, Genant H (1996) Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 6:376–385

    CAS  PubMed  Google Scholar 

  18. Link TM, Vieth V, Langenberg R, Meier N, Lotter A, Newitt D, Majumdar S (2003) Structure analysis of high-resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int 72:156–165

    Article  Google Scholar 

  19. Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y, Lane NE, Genant HK (1998) In vivo high-resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182

    CAS  PubMed  Google Scholar 

  20. Jiang Y, Zhao J, Augat P, Ouyang X, Lu Y, Majumdar S, Genant HK (1998) Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical properties. J Bone Miner Res 13:1783–1790

    Google Scholar 

  21. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22:445–454

    Article  CAS  PubMed  Google Scholar 

  22. Hwang SN, Wehrli FW, Williams JL (1997) Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength. Med Phys 24:1255–1261

    CAS  PubMed  Google Scholar 

  23. Melton LJ III (1995) Epidemiology of fractures. In: Riggs BL, Melton LJ (eds) Osteoporosis: Etiology, diagnosis and management, 2nd edn. Lippincott-Raven, Philadelphia, 225–249

  24. Riggs BL, Melton LJ III (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17:505–511

    Article  Google Scholar 

  25. MacIntyre NJ, Adachi JD, Webber CE (1999) Gender differences in normal age-dependent patterns of radial bone structure and density: a cross-sectional study using peripheral quantitative computed tomography. J Clin Densitom 2:163–173

    Article  Google Scholar 

  26. World Health Organization (1994) Definition of osteoporosis. Technical Report Series 843

  27. Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    PubMed  Google Scholar 

  28. Newitt DC, Van Rietbergen B, Majumdar S (2002) Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int 13:278–287

    Article  CAS  PubMed  Google Scholar 

  29. Hayes WC, Bouxsein ML (1997) Biomechanics of cortical and trabecular bone: Implications for assessment of fracture risk. In: Mow VC, Hayes WC (eds) Basic orthopaedic biomechanics, 2nd edn. Lippincott-Raven, Philadelphia, pp 69–111

  30. van der Meulen MC, Jepsen KJ, Mikic B (2001) Understanding bone strength: size isn’t everything. Bone 29:101–104

    Article  PubMed  Google Scholar 

  31. Muller ME, Webber CE, Bouxsein ML (2003) Predicting the failure load of the distal radius. Osteoporos Int 14:345–352

    Article  Google Scholar 

  32. Lochmüller EM, Krefting N, Bürklein D, Eckstein F (2001) Effect of fixation, soft tissues, and scan projection on bone mineral measurements with dual energy X-ray absorptiometry (DXA). Calcif Tissue Int 68:140–145

    Article  Google Scholar 

  33. Augat P, Reeb H, Claes LE (1996) Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11:1356–1363

    Google Scholar 

  34. Edmondston SJ, Singer KP, Day RE, Breidahl PD, Price RI (1994) Formalin fixation effects on vertebral bone density and failure mechanics: an in vitro study of human and sheep vertebrae. Clin Biomech (Bristol Avon) 9:175–179

    Google Scholar 

  35. Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Glüer CC, Lu Y, Chavez M (1997) Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 12:697–711

    Google Scholar 

  36. Myers ER, Sebeny EA, Hecker AT, Corcoran TA, Hipp JA, Greenspan SL, Hayes WC (1991) Correlations between photon absorption properties and failure load of the distal radius in vitro. Calcif Tissue Int 49:292–297

    Google Scholar 

  37. Njeh CF, Wu C, Fan B, Hans D, Fuerst T, He Y, Genant HK (2000) Estimation of wrist fracture load using phalangeal speed of sound: an in vitro study. Ultrasound Med Biol 26:1517–1523

    Article  Google Scholar 

  38. Vieth V, Link TM, Lotter A, Persigehl T, Newitt D, Heindel W, Majumdar S (2001) Does the trabecular bone structure depicted by high-resolution MRI of the calcaneus reflect the true bone structure? Invest Radiol 36:210–217

    Google Scholar 

  39. Lin JC, Amling M, Newitt DC, Selby K, Srivastav SK, Delling G, Genant HK, Majumdar S (1998) Heterogeneity of trabecular bone structure in the calcaneus using magnetic resonance imaging. Osteoporos Int 8:16–24

    Article  CAS  PubMed  Google Scholar 

  40. Benhamou CL, Poupon S, Lespessailles E, Loiseau S, Jennane R, Siroux V, Ohley W, Pothuaud L (2001) Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 16:697–704

    Google Scholar 

Download references

Acknowledgements

Gudrun Goldmann is to be thanked for her help with the DXA measurements, Harald Well for performing the mechanical test, and Dr. Stephan Metz for his help with obtaining the radiographs of the forearms after mechanical testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hudelmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudelmaier, M., Kollstedt, A., Lochmüller, E.M. et al. Gender differences in trabecular bone architecture of the distal radius assessed with magnetic resonance imaging and implications for mechanical competence. Osteoporos Int 16, 1124–1133 (2005). https://doi.org/10.1007/s00198-004-1823-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-004-1823-y

Keywords

Navigation