Skip to main content
Log in

Mechanical behavior of screws in normal and osteoporotic bone

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Fracture fixation in severe osteoporotic bone by means of implants that rely on screw anchorage is still a clinical problem. So far, a sufficiently accurate prediction of the holding capacity of screws as a function of local bone morphology has not been obtained. In this study the ultimate pullout loads of screws in the epi-, meta-, and diaphyseal regions of human tibiae were correlated to the cortical thicknesses and cancellous bone mineral densities at the screw axes determined from QCT densitometric data. Stepwise multiple linear regression showed that in regions with cortical thicknesses below 1.5 mm, cancellous density determined the ultimate pullout load (R2=0.85, p<0.001), while in regions with cortices above 1.5 mm, cortical thickness alone significantly influenced the holding capacity of a screw (R2=0.90, p<0.001). The findings of this study provide a basis for a bone morphology-related pre-operative estimation of the holding capacity of screws, which could help to improve their proper application in osteoporotic bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asnis SE, Ernberg JJ, Bostrom MP, Wright TM, Harrington RM, Tencer A, Peterson M (1996) Cancellous bone screw thread design and holding power. J Orthop Trauma 10:462–469

    Article  CAS  PubMed  Google Scholar 

  2. Bloom RA (1980) A comparative estimation of the combined cortical thickness of various bone sites. Skeletal Radiol 5:167–170

    CAS  PubMed  Google Scholar 

  3. Brown GA, McCarthy T, Bourgeault CA, Callahan DJ (2000) Mechanical performance of standard and cannulated 4.0-mm cancellous bone screws. J Orthop Res 18:307–312

    CAS  PubMed  Google Scholar 

  4. Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D (1996) Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 118:391–398

    CAS  PubMed  Google Scholar 

  5. DeCoster TA, Heetderks DB, Downey DJ, Ferries JS, Jones W (1990) Optimizing bone screw pullout force. J Orthop Trauma 4:169–174

    CAS  PubMed  Google Scholar 

  6. Eckstein F, Lochmuller EM, Lill CA, Kuhn V, Schneider E, Delling G, Muller R (2002) Bone strength at clinically relevant sites displays substantial heterogeneity and is best predicted from site-specific bone densitometry. J Bone Miner Res 17:162–171

    PubMed  Google Scholar 

  7. Faran KJ, Ichioka N, Trzeciak MA, Han S, Medige J, Moy OJ (1999) Effect of bone quality on the forces generated by compression screws. J Biomech 32:861–864

    Article  CAS  PubMed  Google Scholar 

  8. Frigg R (2001) Locking compression plate (LCP): an osteosynthesis plate based on the dynamic compression plate and the Point Contact Fixator (PC-Fix). Injury 32 (Suppl) 2:63–66

    Article  PubMed  Google Scholar 

  9. Harnroongroj T, Techataweewan A (1999) Determination of the role of the cancellous bone in generation of screw holding power at metaphysis. Clin Biomech 14:364–366

    Article  CAS  Google Scholar 

  10. Jergas M, Schmid G (1999) Conventional radiology of osteoporosis and radiographic absorptiometry. Radiologe 39:174–185

    Article  CAS  PubMed  Google Scholar 

  11. Messmer P, Long G, Suhm N, Regazzoni P, Jacob AL (2001) Volumetric model determination of the tibia based on 2D radiographs using a 2D/3D database. Comput Aided Surg 6:183–194

    Article  CAS  PubMed  Google Scholar 

  12. Pearson J, Ruegsegger P, Dequeker J, Henley M, Bright J, Reeve J, Kalender W, Felsenberg D, Laval-Jeantet AM, Adams JE (1994) European semi-anthropomorphic phantom for the cross-calibration of peripheral bone densitometers: assessment of precision accuracy and stability. Bone Miner 27:109–120

    CAS  PubMed  Google Scholar 

  13. Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44:751–764

    Article  CAS  PubMed  Google Scholar 

  14. Snyder SM, Schneider E (1991) Estimation of mechanical properties of cortical bone by computed tomography. J Orthop Res 9:422–431

    CAS  PubMed  Google Scholar 

  15. Stromsoe K, Kok WL, Hoiseth A, Alho A (1993) Holding power of the 4.5 mm AO/ASIF cortex screw in cortical bone in relation to bone mineral. Injury 24:656–659

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement. The authors gratefully acknowledge Mathys Medical Ltd, Bettlach, Switzerland, for providing the screws for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seebeck, J., Goldhahn, J., Morlock, M.M. et al. Mechanical behavior of screws in normal and osteoporotic bone. Osteoporos Int 16 (Suppl 2), S107–S111 (2005). https://doi.org/10.1007/s00198-004-1777-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-004-1777-0

Keywords

Navigation