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The flow gradients in the vicinity of a shock
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Supersonic vortex plane and axisymmetric flows of non–viscous non–heatconductive gas
with arbitrary thermodynamic properties in the vicinity of a steady shock wave are
studied. The differential equations describing the gas flow exterior to the discontinuity
surface and the dynamic compatibility conditions at this discontinuity are used. The
gas flow nonuniformity in the shock vicinity is described by the space derivatives of the
gasdynamic parameters at a point on the shock surface. The parameters are the gas
pressure, density, velocity vector. The derivatives with respect to the directions of the
streamline and normal to it, and of the shock surface and normal to it are considered.
Space derivatives of all gasdynamic parameters are expressed through the flow noniso-
baric factor along the streamline, the streamline curvature, and the flow vorticity and
non–isoenthalpy factors. An algorithm for these factors of the gas flow downstream a
shock wave determination is developed. Examples of these factors calculation for imper-
fect oxygen and thermodynamically perfect gas are presented. The influence coefficients
of the upstream flow factors on the downstream flow factors are calculated. As an illustra-
tion for flows with upstream Mach number 5 it is shown that the flow vorticity factor is
the most influenced by the thermodynamical gas properties. The gas flow in the vicinity
of the shock is described by the isolines of gasdynamic parameters. Uniform plane and
axisymmetric flows on different distances from the axis of symmetry are examined; the
isobars, isopycnics, isotachs and isoclines are used to characterize the downstream flow
behind a curved shock in an imperfect gas.

1. Introduction

Stationary shock waves are formed and their interference is observed in case a station-
ary supersonic gas flow flows around rigid bodies of complex geometry. The thin spatial
zones of shock waves can be modelled as surfaces of gasdynamic discontinuities (GDD).
The gas flow exterior to the GDD is assumed non–viscous, non–heatconductive and ther-
modynamically equilibrium. The problem of the local flow description in the vicinity
of the GDD includes calculation of the gas flow parameters and the first space partial
derivatives of parameters downstream it. In (Uskov 1983), see also (Adrianov, Starykh &
Uskov 1995) and (Uskov & Mostovykh 2010), the former problem is called the zero–order

problem, and the latter — the first–order problem. The first–order problem can be set not
only for discontinuities but also for discontinuous characteristics. They are infinitively
weak shock waves; gasdynamic parameters remain continuous on their surfaces, whereas
its first derivatives are discontinuous.
In order to solve the zero–order problem the relations between the gasdynamic param-

eters on the sides of the GDD are established — the dynamic compatibility conditions

(DCC) on it. The DCC on shock waves were first obtained by Rankine (1870). In order
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to solve the first–order problem, gasdynamic parameters of the flows both upstream and
downstream the GDD should be known from the zero–order problem solution. The rela-
tions between the first space partial derivatives of gasdynamic parameters on both sides
of the discontinuity are called differential dynamic compatibility conditions (DDCC).
In most studies, beginning from the paper of Rankine (1870), the zero–order problem

was solved for a thermodynamically perfect gas. The thermally perfect gas model was
also often used. In this model the thermal Clapeyron equation of state is assumed to
be satisfied, and the gas specific heats are supposed depending on the gas temperature.
In Law (1970) the zero–order problem is solved in the limits of a thermally perfect
gas model for oxygen; the gas was supposed to be in dissociation equilibrium. Ando
(1981) calculated shocks in carbon dioxide in various models of thermally perfect gas.
In these models the vibrational degrees of freedom were taken into account and the gas
dissociation was considered.
The Euler equations give several linear relations between the space gasdynamic pa-

rameters derivatives. It is therefore possible to select a set of derivatives through which
all the rest derivatives can be expressed. The totality of the selected derivatives will be
called the basic flow unevennesses. The first–order problem solution can be reduced to
their calculation downstream the shock.
The first–order problem was considered in the works Thomas (1947) and Brown (1950).

Thomas (1947) obtained the DDCC for shock waves in plane steady flows of a perfect
gas. The DDCC were formulated in terms of the coordinate derivatives of the gasdy-
namic parameters. The parameters derivatives downstream the shock and the streamline
curvature were obtained for a uniform upstream flow. Brown received these derivatives
for a non–uniform upstream flow. He described the upstream flow non–uniformity with
the streamline curvature, the ratio of the gas pressure and the velocity vector polar angle
differentials along the streamline and the flow vorticity.
The first–order problem for a discontinuous characteristic is solved in (Courant &

Friedrichs 1948) for an arbitrary steady gas flow.
Lin & Rubinov (1948) considered the first–order problem in terms of gasdynamic

parameters derivatives with respect to natural directions (the directions tangential and
normal to the streamline). They studied plane and axisymmetric isoenergetic flows of a
perfect gas. For irrotational upstream flows they obtained two relations between pressure
and velocity vector polar angle derivatives along the streamline on both sides of the
shock and its curvature. In particular, for the shock normal to the upstream flow at some
point, they showed the possibility of infinite curvature. Eckert (1975) examined rotational
upstream flows. He determined the pressure and velocity polar angle derivatives along
the streamline downstream the shock through similar derivatives in the upstream flow,
its vorticity and the shock curvature. Eckert also studied parameter gradients in the
vicinity of discontinuous characteristics and rarefaction waves.
Truesdell (1952) analysed imperfect gas flows in the vicinity of shock waves. He calcu-

lated the vorticity downstream a curved shock in a uniform upstream flow.
D’yakov (1957) obtained the DDCC in an imperfect gas stream. He used them to

study the interaction of a shock wave with a discontinuous characteristic. Rusanov (1973)
formulated the DDCC in three–dimensional steady flows of an imperfect gas. He used
the local Cartesian coordinate system associated with a point on the shock surface. For
a uniform upstream flow he obtained derivatives downstream the shock.
Mölder (1979) considered isoenergetic flows of a perfect gas. He introduced a set of

three basic unevennesses in terms of derivatives with respect to natural directions. Deriva-
tives of all parameters and their isolines inclination angles are uniquely determined by
them. Relations between the basic unevennesses of the flows on both sides of the shock
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depending on its curvature are obtained. Mölder (2012) derived equations for the in-
fluence coefficients of the upstream flow unevennesses and the shock curvatures on the
downstream flow unevennesses. He calculated their dependences on the shock inclination
angle for the Mach number M = 3. The conditions for the Thomas and the Crocco
points in a uniform upstream axisymmetric flow are obtained. In (Mölder, Timofeev &
Emanuel 2011; Mölder 2012) the flow in the vicinity of a sonic point on the shock in
uniform planar and axisymmetric upstream flows are studied.
In (Uskov 1983) and (Adrianov, Starykh & Uskov 1995) for plane and axisymmetric

flows of a perfect gas a set of three basic flow unevennesses is introduced. They are ex-
pressed in terms of the derivatives of static and total pressure and velocity polar angle
with respect to natural directions. The analytical formulae for the influence coefficients
of the upstream flow unevennesses and the shock curvatures on the downstream flow un-
evennesses are given. The obtained relations are used for solving the first–order problem
for several shock–wave structures.
Emanuel & Liu (1988) received DDCC for shock wave propagating in a nonuniform flow

of a single–phase gas in thermodynamic equilibrium. The general theory for the deriva-
tives on the downstream side of a curved shock is developed. The problem is solved
in curvilinear coordinates associated with the shock surface. Hornung (1998) examined
steady flows of a perfect gas, capable of chemical reactions, in the same coordinates. The
rate of energy deposition in the chemical reactions in the flow downstream the shock be-
comes a significant factor in the problem apart from the shock wave curvature. For a plane
uniform upstream flow the influence coefficients of the rate of energy deposition and cur-
vature on the derivatives of gasdynamic parameters downstream the shock are obtained.
In this paper the first–order problem is solved for a shock wave; plane and axisymmetric

gas flows are considered. The gas on both sides of the GDD satisfies the thermodynamic
equation of its state; this equation is assumed to be arbitrary. The gas pressure, density,
velocity vector magnitude and its polar angle are chosen as the flow parameters. The
problem is solved in terms of derivatives with respect to natural directions.
A standard procedure for the DDCC formulation is realized in § 2. In § 3 four basic

flow unevennesses are introduced: the flow nonisobaric factor along the streamline N1, the
streamline curvature N2, the flow vorticity factor N3 and the flow nonisoenthalpy factor
N7. The unevennesses N1, N2, N3 were proposed in (Uskov, 1983) for thermodynamically
perfect gas flows; the unevenness N7 is introduced in the present paper. Compared with
the papers of Mölder (1979, 2012) the number of unevennesses is increased by one,
because the gas flow is not assumed isoenergetic. Three unevennesses of Mölder are
expressed through all four unevennesses of the present study.
The influence coefficients of the basic unevennesses of the upstream flow and the shock

curvatures on the basic unevennesses of the downstream flow are studied in § 4. For
the case of an overexpanded jet outflow from a nozzle, the shock coming down from the
nozzle edge and the jet boundary curvatures are obtained.
In § 5 the gas flow in the vicinity of the shock, following the ideas of (Mölder 1979), is

described by the isolines of the gasdynamic parameters. The behavior of the isolines in
the vicinity of the sonic point on the shock surface is investigated. (Mölder et al. 2011)
introduced three types of flow in the vicinity of the sonic point; in case of an arbitrary
shape of the shock surface four types of flow in this vicinity are distinguished.

2. Differential dynamic compatibility conditions on shock waves

In this section the DDCC on shock waves in arbitrary plane and axisymmetric flows
for gases with arbitrary thermodynamic equation of state are obtained. The research
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methods used to describe shocks in plane and axisymmetric flows are similar. Additional
comments on the axisymmetric flow are given in parentheses.
The gas flow at each point is described by its pressure p, density ρ, temperature T ,

velocity vector V . The gas thermodynamic properties are given by the canonical equation
of gas state — the dependence of its enthalpy h on the pressure p and entropy s.
The flow pictures for different geometries of the shock wave surface are shown in

figure 1. The flow plane (meridional half–plane) sections are depicted. The shock surfaces
on figures 1(a) and 1(b) are concave towards the upstream flow, whereas the shocks on
figures 1(c) and 1(d) are convex. For plane gas flows the cases shown on figures 1(a)
and 1(b), 1(c) and 1(d) are the same and differ only in the choice of the coordinates
system. In axisymmetric flows figures 1(a) and 1(c) correspond to shocks incoming to
the axis of symmetry, and figures 1(b) and 1(d) — to shocks outgoing from the axis. All
the notations used in figure 1 are explained further on.
Let us introduce three orthogonal unit vectors (orthonormal basis) ν, τ , b (figure 1)

at each point of the shock wave. The normal to the shock surface vector ν is directed
to the region downstream the shock wave, the tangential to the shock surface vector
τ belongs to the flow plane (meridional half–plane) and forms an acute angle with the
velocity vector V , the vector b complements the two vectors to the right–hand system.
The gas flow velocity V projections on the directions ν, τ , b are denoted uν , uτ , ub; in
this case the following is valid:

uν ≡ (V , ν) > 0; uτ ≡ (V , τ ) ≥ 0; ub ≡ (V , b) = 0; V = uνν + uττ . (2.1)

The gasdynamic parameters are discontinuous on the shock wave surface; their deriva-
tives are not defined. Local DCC on a shock wave for an arbitrary point on its surface
in terms of the velocity projections have the form (Chernyi 1994):





ρuν = ρ̂ûν ,

uτ = ûτ ,

p+ ρu2
ν = p̂+ ρ̂û2

ν ,

h(p, ρ) +
V 2

2
= ĥ(p̂, ρ̂) +

V̂ 2

2
.

(2.2)

Here the parameters marked with ̂ correspond to the gas state downstream the shock,
the parameters without it — to the gas state upstream it. The gas thermodynamic pa-
rameters are interdependent due to the canonical equation of gas state. In particular, the
gas enthalpy can be considered as a function of its pressure and density (see Appendix A).

Later on the designation ĥ implies that the enthalpy is calculated for the arguments p̂, ρ̂.
The flow parameters downstream the shock satisfying the system (2.2) are calculated in
the zero–order problem. This problem is supposed already solved in the present paper.
Let us introduce the Cartesian coordinates system x, y in the flow plane (meridional

half–plane). The gas flow velocity vector V belongs to this plane; it can be set by its
magnitude V and the polar angle Θ, which is measured from the x axis to the velocity
direction. The positive direction of the polar angles is taken from the direction of the
x axis to the y axis. In case of a plane flow the choice of the coordinates system is
arbitrary, in case of an axisymmetric flow x is the axis of symmetry, the half–axis y ≥ 0
is the radius. In the papers of different authors different mutual orientation of the x and
y axes was used (right or left). In this paper both cases are included into consideration.
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Figure 1. Flow pictures in the flow plane (meridional half–plane) in the vicinity of an arbitrary point on the shock wave surface.
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The unit vectors of the axes x and y and the unit vectors ν, τ satisfy the equality
ex × ey = χν × τ , the parameter χ = ±1 depends on the relative orientation of the x,
y axes and the vectors ν, τ . The parameter χ was introduced in (Uskov 1983) as the
shock direction index relative to the upstream flow. The index χ is defined as follows:
χ = +1, if the rotation of the gas velocity V̂ downstream the shock towards its surface
on the smallest angle (i.e. rotation of V̂ to τ ) coincides with the direction of rotation of

the x axis to the y axis. Since the V̂ direction lies between the directions ν and τ , these
definitions of the parameter χ coincide.
Let us denote the shock wave inclination angle σ and the flow deflection angle β

(figure 1): σ is the angle between the direction of V upstream the shock and τ , such

that σ ∈ (0; π/2]; β is the angle between V and V̂ , β ∈ [0; σ), then the angle between

the velocity V̂ direction and the shock surface is (σ − β). Note that the angles σ and
β are counted off the direction of ν towards the direction of τ (this turn coincides with
the direction of the x axis towards the y axis in case χ = +1, and is opposite to it in
case χ = −1). Using angles σ and β let us relate the velocities magnitudes V and V̂ on
the sides of the shock with their projections on the directions ν and τ and rewrite (2.1),
using the second equation (2.2), in the form:

uν = V sinσ; ûν = V̂ sin(σ − β); uτ = V cosσ = V̂ cos(σ − β) = ûτ . (2.3)

A shock wave can be specified by four parameters of the upstream flow, the shock
intensity J , and the shock direction index χ relative to the upstream flow. The gas
pressure p, temperature T , velocity polar angle Θ, and Mach number M are chosen as
parameters. The shock intensity J ≡ p̂/p is equal to the ratio of the gas static pressures
on the sides of the shock. The zero–order problem is confined to determination of the
flow downstream the shock parameters: pressure p̂, density ρ̂, velocity polar angle Θ̂ and
magnitude V̂ , and the discontinuity inclination angle σ and the flow deflection angle
β. Since the shock intensity J and its inclination angle σ for the given incoming flow
parameters are interdependent (for instance, Mostovykh & Uskov 2011), the shock can
be specified by any of these values; this fact is used later on. Note that in the zero–order
problem the input parameters Θ and χ influence only on the angle Θ̂ value:

Θ̂ = Θ + χβ. (2.4)

In thermodynamically perfect gas the angles σ, β and Θ̂ do not depend on the pressure
p and temperature T ; the intensity J and the angle σ are related by

J =
2γ

γ + 1
M2 sin2 σ −

γ − 1

γ + 1
,

here γ is the gas specific heats at constant pressure and constant volume ratio.
In order to describe the shock surface, Uskov in (Adrianov et al. 1995) introduced the

polar angle Ω of the tangential direction vector τ (figure 1). The angle Ω is measured
from the x axis towards τ ; the angle Ω > 0 in case the rotation takes place in the
positive direction. The rotation from the x axis towards the direction τ can be obtained
as a combination of the rotation from the x axis to the direction V on the velocity vector
polar angle Θ and rotation from V to τ on the angle χσ, therefore,

Ω = Θ + χσ. (2.5)

The polar angle of the direction ν is Ω − χπ/2, hence,

ν = cos (Ω − χπ/2)ex + sin (Ω − χπ/2)ey. (2.6)

The derivatives of the normal unit vector ν with respect to the tangent directions τ
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Figure 1(a) Figure 1(b) Figure 1(c) Figure 1(d)
χ −1 +1 −1 +1
Sa > 0 > 0 < 0 < 0
Sb ≥ 0 ≤ 0 ≥ 0 ≤ 0
N5 < 0 > 0 > 0 < 0
Ω [3π/2; 2π] [0; π/2] [3π/2; 2π] [0; π/2]

Table 1. The parameters corresponding to the different geometries of the shock surface

and b define the shock wave curvatures in two mutually perpendicular normal sections:
in the flow plane (meridional half–plane) and in the plane perpendicular to it. Mölder
(1979) described the shock surface with these curvatures, and designated them Sa and
Sb, respectively. The curvatures are supposed positive if the shock curve is concave to-
wards the upstream flow in the relevant normal cross–section, and are supposed negative
otherwise. Under this choice of signs the equalities

∂ν

∂τ
= Saτ ,

∂τ

∂τ
= −Saν;

∂ν

∂b
= Sbb,

∂b

∂b
= −Sbν (2.7)

for the unit vectors derivatives with respect to the tangential directions hold. In the plane
flow the curvature Sb turns to zero.
In (Rusanov 1973) the discontinuity curvatures are introduced in the same way as in

(Mölder 1979), but their signs are the opposite ones.
In (Uskov 1983) and (Adrianov et al. 1995) the shock wave surface is described by the

curvatures N4 and N5. The curvature N5 in the flow plane (meridional half–plane) is
defined by the formula N5 ≡ ∂Ω/∂τ . The curvature N4 in plane flows is assumed to be
zero, in axisymmetric flows it is determined by the shock radius in a plane perpendicular
to the axis of symmetry. Precisely, N4 ≡ δ/y, here for plane flows δ = 0, for axisymmetric
flows δ = 1, so that N4 ≥ 0.
Let us establish a relation between the curvatures Sa, Sb and N5, N4. Differentiating

(2.6) with respect to τ , we get

∂ν

∂τ
= (χ cosΩex + χ sinΩey)N5 = χN5τ ,

thus,

Sa = χN5. (2.8)

According to the Meusnier theorem (Smirnov 1964), N4 and Sb differ by a factor equal
to the cosine of the angle between the normal to the shock surface vector ν and the unit
vector ey of the radius. Thus,

Sb = N4 cos
(
Ω − χ

π

2
−

π

2

)
= −χN4 cosΩ.

In this paper, the curvatures Sa andN4 are used to describe the shock surface. Selecting
N4 instead of Sb avoids the uncertainty of the form 0/0 in the description of shocks
perpendicular to the axis of symmetry (Ω = ±π/2).
Table 1 shows the values of the shock direction index χ relative to the incident flow,

the signs of the curvatures Sa, Sb and N5, the intervals of the polar angle Ω change,
corresponding to the shock geometries shown in figure 1. Let us note that if in an ax-
isymmetric flow the gas flows in the positive direction of the x axis (|Θ| < π/2), the
value χ = −1 corresponds to a shock, incoming to the axis of symmetry, i.e. Sb > 0, and
the value χ = +1 — to a shock, outcoming from the axis, i.e. Sb < 0. In other words, the
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sign of the previously introduced direction index χ is always opposite to the curvature
Sb sign.
The relationship between the gasdynamic parameters derivatives along the surface of

the shock wave on the two sides of it is established by differentiating relations (2.2) along
its surface, i.e. in the directions τ and b:





∂ρ

∂τ
uν + ρ

∂uν

∂τ
=

∂ρ̂

∂τ
ûν + ρ̂

∂ûν

∂τ
,

∂uτ

∂τ
=

∂ûτ

∂τ
,

∂p

∂τ
+

∂ρ

∂τ
u2
ν + 2ρuν

∂uν

∂τ
=

∂p̂

∂τ
+

∂ρ̂

∂τ
û2
ν + 2ρ̂ûν

∂ûν

∂τ
,

hp
∂p

∂τ
+ hρ

∂ρ

∂τ
+ V

∂V

∂τ
= ĥp

∂p̂

∂τ
+ ĥρ

∂ρ̂

∂τ
+ V̂

∂V̂

∂τ
,

(2.9)

here hp ≡ ∂h/∂p
∣∣
ρ=const

and hρ ≡ ∂h/∂ρ
∣∣
p=const

. In the plane case, all gasdynamic

parameters remain constant in the direction b, since b is perpendicular to the flow plane.
In the axisymmetric case, the change in the direction b corresponds to a transition
to a different meridional half–plane with the same values of all the scalar gasdynamic
parameters. Consequently, all derivatives in the direction b are zero; the equations that
arise as a result of differentiating (2.2) in the direction b, hold identically both in plane
and axisymmetric cases.
The system (2.9) can be considered as an algebraic system of equations with respect to

the gasdynamic parameters derivatives ∂p̂/∂τ , ∂ρ̂/∂τ , ∂ûν/∂τ , ∂ûτ/∂τ . These derivatives
are taken along the tangent to the shock surface at some fixed point on the downstream
side of the shock. The unknown ∂V̂ /∂τ can be expressed using (2.3):

V̂ 2 = û2
ν + û2

τ ; V̂
∂V̂

∂τ
= ûν

∂ûν

∂τ
+ ûτ

∂ûτ

∂τ
.

After division by V̂ , we get

∂V̂

∂τ
=

∂ûν

∂τ
sin(σ − β) +

∂ûτ

∂τ
cos(σ − β).

Let us deduce the DDCC on a shock wave in terms of the derivatives of gas pressure,
density, and velocity magnitude and polar angle. The projections of the velocity vector
uν , uτ on the shock surface depend on the velocity V and the basis vectors ν and τ . Let
us express the derivatives of uν, uτ with respect to the tangential direction τ through
the derivatives of the velocity magnitude V , its polar angle Θ, and the shock curvature.
The derivative ∂uν/∂τ is given by differentiation of (2.1):

∂uν

∂τ
≡

∂

∂τ
(V , ν) =

(
∂V

∂τ
, ν

)
+

(
V ,

∂ν

∂τ

)
. (2.10)

Let us fix a point O on the shock surface; all the quantities referring to the point O will
be marked with the index O. The vectors νO, τO define an orthonormal basis in the
flow plane (meridional half–plane), consequently, V = (V , νO)νO + (V , τO) τO in the
vicinity of O. For the derivatives in the direction τ we have

∂V

∂τ
=

∂ (V , νO)

∂τ
νO +

∂ (V , τO)

∂τ
τO. (2.11)
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The polar angles of the velocity vector V and the directions νO and τO are equal to Θ,
ΩO − χπ/2 and ΩO, respectively, hence at any point of the shock we obtain

∂ (V , νO)

∂τ
=

∂

∂τ

(
V cos

(
Θ −

(
ΩO − χ

π

2

)))
= χ

∂

∂τ
(V sin(ΩO −Θ)) =

= χ
∂V

∂τ
sin(ΩO −Θ) − χV cos(ΩO −Θ)

∂Θ

∂τ
;

∂ (V , τO)

∂τ
=

∂

∂τ
(V cos(Θ −ΩO)) =

∂V

∂τ
cos(ΩO −Θ) + V sin(ΩO −Θ)

∂Θ

∂τ
.

Using (2.11), (2.5) and (2.3), for the derivatives at the point O we get
(
∂V

∂τ
, νO

)
=

∂ (V , νO)

∂τ
= sinσO

∂V

∂τ
− χ(uτ )O

∂Θ

∂τ
, (2.12)

(
∂V

∂τ
, τO

)
=

∂ (V , τO)

∂τ
= cosσO

∂V

∂τ
+ χ(uν)O

∂Θ

∂τ
. (2.13)

The derivative ∂uν/∂τ , given by (2.10), at the point O using (2.12), (2.7) and (2.1)
reduces to

∂uν

∂τ
= sinσO

∂V

∂τ
− χ(uτ )O

∂Θ

∂τ
+ (uτ )OSa. (2.14)

Let us consider the second equation (2.9) at the point O on the shock and re–arrange its
left side, using (2.1), (2.13), (2.7):

∂uτ

∂τ
=

∂ (V , τ )

∂τ
=

(
∂V

∂τ
, τO

)
+

(
V O,

∂τ

∂τ

)
=

= cosσO
∂V

∂τ
+ χ(uν)O

∂Θ

∂τ
− (uν)OSa.

(2.15)

In order to adapt the formulae (2.14), (2.15) to derivatives downstream the shock wave,

it is necessary to add ̂ and to replace σO with σO−βO. In the following the parameters
and their derivatives are calculated at O. For simplicity, the index O is below omitted.
Let us rewrite (2.9), using (2.14), (2.15), and taking uτ = ûτ (second DCC (2.2)) into

account:




∂ρ

∂τ
uν + ρ sinσ

∂V

∂τ
− χρuτ

∂Θ

∂τ
+ Saρuτ =

=
∂ρ̂

∂τ
ûν + ρ̂ sin(σ − β)

∂V̂

∂τ
− χρ̂uτ

∂Θ̂

∂τ
+ Saρ̂uτ ,

cosσ
∂V

∂τ
+ χuν

∂Θ

∂τ
− uνSa = cos(σ − β)

∂V̂

∂τ
+ χûν

∂Θ̂

∂τ
− ûνSa,

∂p

∂τ
+

∂ρ

∂τ
u2
ν + 2ρuν sinσ

∂V

∂τ
− 2χρuνuτ

∂Θ

∂τ
+ 2Saρuνuτ =

=
∂p̂

∂τ
+

∂ρ̂

∂τ
û2
ν + 2ρ̂ûν sin(σ − β)

∂V̂

∂τ
− 2χρ̂ûνuτ

∂Θ̂

∂τ
+ 2Saρ̂ûνuτ ,

hp
∂p

∂τ
+ hρ

∂ρ

∂τ
+ V

∂V

∂τ
= ĥp

∂p̂

∂τ
+ ĥρ

∂ρ̂

∂τ
+ V̂

∂V̂

∂τ
.

(2.16)
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The underlined terms can be reduced on the basis of the first equation (2.2). The system
(2.16) gives the DDCC on a shock wave.

3. The basic gas flow unevennesses

In this section a full set of the basic gas flow unevennesses is developed; the first
derivatives of all gasdynamic parameters with respect to an arbitrary direction can be
calculated in terms of this set. The relations between this set and the unevennesses,
introduced earlier, for special cases of gas flows, in (Mölder 1979) and (Uskov 1983), are
established.

The basic gas flow unevennesses should be determined by the gasdynamic parameters
variation in space and do not depend on the choice of the coordinates system. In order to
define them, let us introduce the unit vectors of natural directions ℓ and n, directed along
the streamlines (co–directional to the gas velocity) and the normal to it, respectively, at
each point of the flow. Direction of the normal n is chosen so that the rotation of ℓ to
n occurs in the positive direction, i.e., that at any point the equality ex × ey = ℓ × n

holds. The gasdynamic parameters derivatives with respect to the natural directions are
independent of the coordinates system, and are fully determined by the gas flow.

The gas dynamics equations for plane and axisymmetric steady motion of non–viscous
non–heatconductive gas in the natural directions ℓ, n have the form (Hayes & Probstein
1966; Ginsburg 1966):





ρ
∂V

∂ℓ
+ V

∂ρ

∂ℓ
+ ρV

∂Θ

∂n
+

δ

y
ρV

∂y

∂ℓ
= 0, (3.1a)

ρV
∂V

∂ℓ
= −

∂p

∂ℓ
, (3.1b)

ρV 2 ∂Θ

∂ℓ
= −

∂p

∂n
, (3.1c)

sp
∂p

∂ℓ
+ sρ

∂ρ

∂ℓ
= 0. (3.1d)

The dependence of the gas specific entropy on its pressure and density s(p, ρ) and its
derivatives is determined from the canonical equation of gas state (see appendix A).

All flow parameters at a given point can be expressed algebraically through four param-
eters p, ρ, V and Θ. First derivatives of these parameters can be expressed algebraically
in terms of the p, ρ, V and Θ derivatives with respect to two mutually perpendicular
directions, for example, ℓ and n. Consequently, these eight derivatives fully describe
the non–uniformity of the flow at a given point. System (3.1) gives four equations, lin-
early relating these derivatives. Thus, at every point, there are four linearly independent
flow parameters first derivatives; their number coincides with the number of differential
equations describing the gas flow.

In order to characterize the non–uniformity of the gas flow at an arbitrary point it is
necessary and sufficient to specify four factors, which are called basic gas flow uneven-

nesses. Uskov (1983) and Mölder (1979) independently of each other introduced the sets
of three basic gas flow unevennesses. Both authors expressed the basic unevennesses in
terms of the derivatives with respect to natural directions. They are:
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


N1 ≡
∂ ln p

∂ℓ
,

N2 ≡
∂Θ

∂ℓ
,

N3 ≡
∂ ln p0
∂n

,





P ≡
1

ρV 2

∂p

∂ℓ
,

D ≡
∂Θ

∂ℓ
,

Γ ≡ −
(curl V )

⊥

V
.

(3.2)

The vector curl V is perpendicular to the flow plane, the kinematic vorticity (curl V )
⊥

is its projection on the direction forming a right–hand system with the pairs ℓ and n,
ex and ey. On the left are the basic unevennesses of the gas flow, introduced in (Uskov
1983), on the right — introduced in (Mölder 1979). Let us explain their physical sense:
N1 — the flow nonisobaric factor along the streamline, N2 — the streamline curvature,
N3 — the flow vorticity factor; P — the dimensionless pressure gradient projected on
the streamline, D — the streamline curvature, Γ — the flow vorticity. Note that all of
the basic unevennesses have the dimension m−1.
In (3.2) the gas flow rest pressure p0 is used, which, together with the rest density ρ0

satisfies the system of equations:




s(p0, ρ0) = s(p, ρ),

h(p0, ρ0) = h(p, ρ) +
V 2

2
.

(3.3)

In the following, the gas flow rest parameters are denoted with subscript 0. The subscript
0 is also used for derivatives of s and h calculated at the values p0, ρ0.
In (Mölder 1979) only flows with constant rest enthalpy in the whole flow field were

considered: h0 = const. This is a broad class of flows, among their number, unseparated
flows around solid bodies of any shape by a uniform initial flow. However, the condition
of constant rest enthalpy breaks in both the wall and the separated boundary layer.
Assuming rest enthalpy to be constant, the parameters p, ρ and V are algebraically
related by the second relation (3.3), and three independent equations remain in the
system (3.1). This reduces the number of independent first derivatives to three.
In (Uskov 1983) and (Adrianov et al. 1995), the problem was solved for a thermo-

dynamically perfect gas. In this case the gas flow dynamic pressure d = ρV 2/2, static
pressure p and the velocity vector polar angle Θ meet a system of three equations:





2
∂d

∂ℓ
+ 2d

∂Θ

∂n
+ 2

δ

y
d
∂y

∂ℓ
= −

∂p

∂ℓ
, (3.4a)

−
V 2

2a2
∂p

∂ℓ
+

∂d

∂ℓ
= −

∂p

∂ℓ
, (3.4b)

2d
∂Θ

∂ℓ
= −

∂p

∂n
, (3.4c)

here a2 = −sρ/sp is squared the local speed of sound in the gas. The equation (3.4a)
is a sum of (3.1a) multiplyed by V and (3.1b); (3.4b) is a sum of (3.1d) multiplyed by
V 2/(2sρ) and (3.1b); (3.4c) is (3.1c). The relations (3.4) for d, p, V and Θ are valid for a
gas with arbitrary properties. For a thermodynamically perfect gas V 2/(2a2) = d/(γp),
and the system (3.4) is a closed system of three equations with respect to d, p and Θ. The
number of the independent first derivatives of parameters also reduces to three. Let us
note that the system (3.4) does not allow to determine all flow parameters. In particular,
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it is impossible to determine ρ and V and, consequently, their derivatives, rest enthalpy
h0 and rest density ρ0. Therefore, the assumption of constant rest enthalpy, made in
(Mölder 1979), can not be considered within the limits of the system (3.4).
In the following the problem is solved for a gas with arbitrary thermodynamic prop-

erties. The basic unevennesses N1, N2 and N3 according to (Uskov 1983) and the value

N7 ≡
ρ0
p0

∂h0

∂n
=

ρ0
p0

(
hp0

∂p0
∂n

+ hρ0
∂ρ0
∂n

)
, (3.5)

the flow non–isoenthalpy factor, are used (index 6 for N was previously used in (Uskov
& Mostovykh 2008)). Mölder (1979) assumed N7 = 0.
The first two pairs of basic unevennesses in (3.2) coincide up to a factor that depends

only on the gasdynamic parameters at the point (but independent of its derivatives):

P =
p

ρV 2
N1; D = N2.

In order to establish a relationship between the vorticity Γ and the unevennesses Ni

(i = 1, 2, 3, 7), let us differentiate (3.3) in the direction n:




sp
∂p

∂n
+ sρ

∂ρ

∂n
= sp0

∂p0
∂n

+ sρ0
∂ρ0
∂n

,

hp
∂p

∂n
+ hρ

∂ρ

∂n
+ V

∂V

∂n
=

∂h0

∂n
.

(3.6)

The derivative ∂p/∂n is expressed through the unevenness N2 using the third equation
(3.1). Then from (3.5) and (3.6) we get

∂ρ0
∂n

=
p0

ρ0hρ0
N7 −

hp0

hρ0

∂p0
∂n

=
p0

ρ0hρ0
N7 −

p0hp0

hρ0
N3;

∂ρ

∂n
=

sp0
sρ

∂p0
∂n

+
sρ0
sρ

∂ρ0
∂n

−
sp
sρ

∂p

∂n
=

=
p0
sρ

(
sp0 −

sρ0hp0

hρ0

)
N3 +

p0sρ0
ρ0hρ0sρ

N7 +
spρV

2

sρ
N2.

(3.7)

Expressing the kinematic vorticity (curl V )
⊥

in the system of natural directions and
using (3.5), (3.6) and (3.7), we get for the vorticity Γ

Γ =
∂ lnV

∂n
−

∂Θ

∂ℓ
=

1

V 2

(
p0
ρ0

N7 − hp
∂p

∂n
− hρ

∂ρ

∂n

)
−

∂Θ

∂ℓ
=

=
p0

ρ0V 2

(
1−

hρsρ0
hρ0sρ

)
N7 −

p0hρ

V 2sρ

(
sp0 −

sρ0hp0

hρ0

)
N3 +

(
ρhp −

spρhρ

sρ
− 1

)
N2.

Using the thermodynamic identity (A 4), we get:

Γ =
p0

ρ0V 2

(
1−

hρsρ0
hρ0sρ

)
N7 +

p0hρ

V 2sρ
·

sρ0
ρ0hρ0

N3 =

=
p0

ρ0V 2
N7 +

p0
ρ0V 2

·
hρsρ0
hρ0sρ

(N3 −N7).

(3.8)

For a thermally perfect gas (i.e., gas satisfying the Clapeyron equation of state p = ρRT ),
the last formula is simplified:

Γ =
p0

ρ0V 2
N7 +

p

ρV 2
(N3 −N7),
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and for thermally and calorically perfect gas, we have

Γ =
N3

γM2
+

γ − 1

2γ
N7.

As already mentioned, in (Mölder 1979) the equality N7 = 0 is assumed, then N3 and Γ
are related by Γ = N3/(γM

2).

In the general case, p, ρ, V and Θ derivatives with respect to natural directions are
expressed through the basic flow unevennesses N1, N2, N3, N7 using (3.2), (3.1), (3.7),
(A 4) and (3.8) by the following formulae:





∂p

∂ℓ
= pN1;

∂ρ

∂ℓ
= −

sp
sρ

pN1;

∂V

∂ℓ
= −

p

ρV
N1;

∂Θ

∂ℓ
= N2;

∂p

∂n
= −ρV 2N2;

∂ρ

∂n
= −

p0
ρ0

·
sρ0

hρ0sρ
(N3 −N7) +

spρV
2

sρ
N2;

∂V

∂n
=

p0
ρ0V

N7 +
p0
ρ0V

·
hρsρ0
hρ0sρ

(N3 −N7) + V N2;

∂Θ

∂n
=

p

ρV 2
N1 +

1

ρ
·
sp
sρ

pN1 −
δ

y
sinΘ.

(3.9)

Let us also give the expressions for the basic gas flow unevennesses through the deriva-
tives of p, ρ, V and Θ with respect to natural directions:

N1 =
∂ ln p

∂ℓ
, N2 =

∂Θ

∂ℓ
, N7 =

ρ0
p0

(
hp

∂p

∂n
+ hρ

∂ρ

∂n
+ V

∂V

∂n

)
,

N3 =
ρ0
p0

(
V
∂V

∂n
+

(
hρ − hρ0

sρ
sρ0

)
∂ρ

∂n
+

(
hp − hρ0

sp
sρ0

)
∂p

∂n

)
.

(3.10)

4. Solution of the first–order problem for a shock wave

In this section the basic unevennesses of the gas flow downstream a shock wave are
determined. The gasdynamic parameters on both sides of the shock are known from the
zero–order problem solution. The unevennesses of the flow upstream the shock and the
shock surface curvatures should be prescribed. The examples of these unevennesses calcu-
lation in the thermodynamically perfect gas model and the thermally perfect, calorically
imperfect gas model are presented. In the latter model the gas heat capacity depends on
its temperature.

The DDCC on a shock wave in the form (2.16) allow to interrelate the basic uneven-
nesses of the gas flows on the sides of the shock. This system is written in terms of p, ρ, V ,
Θ derivatives with respect to the tangential to the shock direction τ . These derivatives
depend on the distribution of gasdynamic parameters as well as on the geometry of the
shock surface. Let us express them in terms of the derivatives with respect to natural
directions and the shock parameters.
For any (scalar or vector) gasdynamic parameter f , defined in the flow field in the

vicinity of the shock surface (p, ρ, V , etc.), the following relations between the derivatives
with respect to directions hold (Lin & Rubinov, 1948; Eckert, 1975):

∂f

∂τ
= cosσ

∂f

∂ℓ
+ χ sinσ

∂f

∂n
; (4.1)



14 V. N. Uskov and P. S. Mostovykh

∂f̂

∂τ
= cos(σ − β)

∂f̂

∂ℓ
+ χ sin(σ − β)

∂f̂

∂n
. (4.2)

The relation (4.1) is valid in the upstream flow, the relation (4.2) — in the downstream

flow. The tilde sign in the derivatives with respect to ℓ̂, n̂ writing is omitted. Let us
note that the derivatives with respect to natural directions on the shock surface are
understood in the sense of one–sided. The derivatives of gasdynamic parameters with
respect to the tangential directions τ and b in the interior points of the discontinuity
surface are continuous. The boundaries of the discontinuity surface correspond to the
lines of its interference with other gasdynamic discontinuities or lie on solid surfaces. At
these boundaries the derivatives with respect to τ and b are understood as one–sided
and they might turn to infinity.
Derivatives with respect to the tangent direction τ in (2.16) can be expressed through

the derivatives with respect to the natural directions ℓ, n using (4.1)–(4.2), and they, in
turn, — through the basic flow unevennesses using (3.9). Since the basic unevennesses
of the flow upstream the shock and the shock curvatures are prescibed, the left sides of
(2.16) are known. Let us solve the algebraic system (2.16) with respect to ∂p̂/∂τ , ∂ρ̂/∂τ ,

∂V̂ /∂τ and ∂Θ̂/∂τ . Its determinant is

det




0 ûν ρ̂ sin(σ − β) −χρ̂uτ

0 0 cos(σ − β) χûν

1 û2
ν 2ρ̂ûν sin(σ − β) −2χρ̂ûνuτ

ĥp ĥρ V̂ 0


 = (4.3)

= det




0 ûν ρ̂ sin(σ − β) −χρ̂uτ

0 0 cos(σ − β) χûν

1 −û2
ν 0 0

ĥp ĥρ V̂ 0


 =

= det




1 −û2
ν

ĥp ĥρ −
û2
ν

ρ̂


× χρ̂ det

(
sin(σ − β) −uτ

cos(σ − β) ûν

)
= χ∆V̂ ,

here (2.3) and the notation ∆ = ρ̂ĥρ − (1 − ρ̂ĥp)û
2
ν was used. Using (A 4), the last

expression can be transformed to

∆ = ρ̂ĥρ

(
1−

û2
ν

â2

)
, ĥρ < 0. (4.4)

In (Chernyi 1994) the inequality ûν ≤ â is proved, and the equality ûν = â takes place
if and only if the shock degenerates into a discontinuous characteristic. For a non–
degenerate shock ∆ < 0, the determinant (4.4) is non–zero, and (2.16) has a unique
solution.
At each point of the shock degeneration into a discontinuous characteristic the equal-

ities

∆ = 0, uν = ûν = a = â, p = p̂, ρ = ρ̂, V = V̂ , β = 0, Θ = Θ̂ (4.5)

are valid. As a result, the dependence on Sa disappears from (2.16). The equations (2.16)
in this case form a homogeneous system of equations with respect to the differences of

derivatives
∂p̂

∂τ
−

∂p

∂τ
,
∂ρ̂

∂τ
−

∂ρ

∂τ
,
∂V̂

∂τ
−

∂V

∂τ
and

∂Θ̂

∂τ
−

∂Θ

∂τ
, and the determinant of this

system is equal to (4.3) and is zero in case of a discontinuous characteristic. Thus, at
each point of the shock degeneration (2.16) has an infinite number of solutions.
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On a discontinuous characteristic surface the relations (4.5) can be differentiated with
respect to the tangential direction τ , so that

∂p̂

∂τ
−

∂p

∂τ
= 0,

∂ρ̂

∂τ
−

∂ρ

∂τ
= 0,

∂V̂

∂τ
−

∂V

∂τ
= 0,

∂Θ̂

∂τ
−

∂Θ

∂τ
= 0. (4.6)

The equalities (4.6) give a trivial solution of the system of equations (2.16); this solution
takes place on the discontinuous characteristic surface.
In case the shock degenerates into a discontinuous characteristic only on a straight line

(circle) that is perpendicular to the flow plane (meridional half–plane), the equalities (4.5)
cannot be differentiated with respect to τ . Such situation takes place, for example, on
the line of origin of a hanging shock wave in jet flows, or in the centre of a centered
compression wave. The determination of the derivatives differences values on the sides of
such discontinuities is yet an unsolved problem.
For non–degenerate shocks the solution of (2.16) has the form:

∂p̂

∂τ
=

[(
ρ̂ĥρ − û2

ν + ρ̂û2
νhp

) ∂p

∂τ
+

+
((

ρ̂ĥρ − û2
ν

)
uν(uν − 2ûν) + û2

ν(ρ̂hρ − ûνuν)
) ∂ρ

∂τ
+

+(uν − ûν)

((
ρ̂ĥρ − û2

ν

)
2ρ+ ρ̂û2

ν

uν + ûν

uν

)(
sinσ

∂V

∂τ
+ uτSa − χuτ

∂Θ

∂τ

)]
∆−1,

(4.7)

∂ρ̂

∂τ
=

[
ρ̂(hp − ĥp)

∂p

∂τ
+
(
−ρ̂ĥpuν(uν − 2ûν) + ρ̂hρ − ûνuν

) ∂ρ

∂τ
+

+ρ̂(uν − ûν)

(
uν + ûν

uν
− 2ĥpρ

)(
sinσ

∂V

∂τ
+ uτSa − χuτ

∂Θ

∂τ

)]
∆−1,

(4.8)

∂V̂

∂τ
=

[
(ĥp − hp)ûν sin(σ − β)

∂p

∂τ
+

+
(
uν

(
ĥρ + ĥpûν(uν − ûν)

)
− ûνhρ

)
sin(σ − β)

∂ρ

∂τ
+

+
V̂

V
∆
∂V

∂τ
−

uτ (uν − ûν)(uν + ûν)

V̂ uν

∆

(
Sa − χ

∂Θ

∂τ

)
+

+ûν(uν − ûν)

(
2ĥpρ−

uν + ûν

uν

)
sin(σ − β)

(
sinσ

∂V

∂τ
+ uτSa − χuτ

∂Θ

∂τ

)]
∆−1,

(4.9)

∂Θ̂

∂τ
= χSa − χ

[
(ĥp − hp) sin(σ − β) cos(σ − β)

∂p

∂τ
+

+
1

V̂

(
uν

(
ĥρ + ĥpûν(uν − ûν)

)
− ûνhρ

)
cos(σ − β)

∂ρ

∂τ
+

+
V 2ûν

V̂ 2uν

∆

(
Sa − χ

∂Θ

∂τ

)
+ (uν − ûν)

(
2ĥpρ−

uν + ûν

uν

)
×

× sin(σ − β) cos(σ − β)

(
sinσ

∂V

∂τ
+ uτSa − χuτ

∂Θ

∂τ

)]
∆−1.

(4.10)
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Let us express the derivative ∂p̂/∂ℓ behind a shock wave through the derivatives with
respect to τ . Let us multiply (3.4a) by χ sin(σ − β), (3.4c) by cos(σ − β), add them to-

gether, substitute ∂d̂/∂ℓ from (3.4b) and express the parameters derivatives with respect
to the normal n through their derivatives with respect to τ using (4.2), we get:

2χ

(
V̂ 2

2â2
− 1

)
∂p̂

∂ℓ
sin(σ − β) + 2d̂

∂Θ̂

∂τ
+ 2χN4d̂ sin Θ̂ sin(σ − β) =

= −χ sin(σ−β)
∂p̂

∂ℓ
−cos(σ−β)

∂p̂

∂n
= −χ cot(σ−β)

∂p̂

∂τ
+χ

(
cos2(σ − β)

sin(σ − β)
− sin(σ − β)

)
∂p̂

∂ℓ
,

As a result, using (2.3) and (2.4), we have

(
1−

û2
ν

â2

)
∂p̂

∂ℓ
= χρ̂V̂ 2 ∂Θ̂

∂τ
sin(σ − β) +N4ρ̂û

2
ν sin(Θ + χβ) + cos(σ − β)

∂p̂

∂τ
. (4.11)

Let us describe an algorithm for the gas flow basic unevennesses N̂1, N̂2, N̂3, N̂7

calculation for a non–degenerate shock wave through the gasdynamic parameters, the
gas flow before the shock basic unevennesses N1, N2, N3, N7, the shock direction index
χ and its curvatures N4 and Sa:

— the derivatives of the main gasdynamic parameters upstream the shock with respect
to the natural directions are determined by formulae (3.9);

— the transition to the derivatives with respect to τ is made using (4.1);

— the derivatives of the main gasdynamic parameters downstream the shock wave
with respect to τ are calculated using the solution (4.7)–(4.10) of the system (2.16);

— the transition back to the derivatives with respect to the natural directions is
held: the pressure derivative ∂p̂/∂ℓ is calculated from (4.11), the derivatives ∂V̂ /∂ℓ,

∂ρ̂/∂ℓ, ∂Θ̂/∂n are determined by (3.1b), (3.1d) and (3.1a), respectively, ∂p̂/∂n, ∂ρ̂/∂n,

∂V̂ /∂n — by formulae (4.2), and ∂Θ̂/∂ℓ — from (3.1c);

— the basic unevennesses of the gas flow behind the shock are calculated by the
formulae (3.10).

All the used relations are linear and homogeneous with respect to the gasdynamic pa-
rameters derivatives and the shock wave curvatures. The interrelations between deriva-
tives with respect to different directions are linear and homogeneous as well. Conse-
quently, the gas flow downstream the shock basic unevennesses are linear homogeneous
functions of the gas flow upstream the shock basic unevennesses N1, N2, N3, N7 and the
shock curvatures Sa and N4. For them, the expansions

N̂i = Ai1N1 + Ai2N2 + Ai3N3 + Ai4N4 + Ai5Sa + Ai7N7, i = 1, 2, 3, 7, (4.12)

are valid; here the coefficients Aij depend only on the gasdynamic parameters, they
are finite for any non–degenerate shock (J > 1). Each of the influence coefficients Aij

characterizes the dependence of the unevenness N̂i on one of the input parameters N1,
N2, N3, N7, N4 and Sa, under the condition that the remaining five parameters are zero.
In plane flows the curvature N4 = 0, and the coefficients Ai4 are not defined. All other
coefficients Aij for plane and axisymmetric flows are the same. The expansion of the form
(4.12) was used before in (Uskov 1983) and (Adrianov et al. 1995).

Let us note that the non–isoenthalpy factor N̂7 of the flow downstream the shock
wave depends only on the non–isoenthalpy factor N7. Really, since the rest enthalpy h0

is constant along the streamline and is the same on the sides of the shock, using the
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relations (4.1) and (4.2) between derivatives we can obtain the equalities

N̂7 =
ρ̂0
p̂0

∂ĥ0

∂n
= χ

ρ̂0
p̂0 sin(σ − β)

∂ĥ0

∂τ
= χ

ρ̂0
p̂0 sin(σ − β)

∂h0

∂τ
=

ρ̂0 sinσ

p̂0 sin(σ − β)

∂h0

∂n
.

Consequently,

A77 =
p0ρ̂0 sinσ

p̂0ρ0 sin(σ − β)
, A7j = 0 for j 6= 7. (4.13)

For a thermally perfect gas the equality A77 = sinσ/ sin(σ − β) is valid.
Let us find the dependence of the basic gas flow unevennesses and the coefficients Aij

on the velocity vector polar angle Θ and the shock direction index relative to the incident
flow χ = ±1. In plane flows the axes x, y are chosen arbitrarily in the flow plane. If you
turn the axes maintaining their relative orientation, the polar angles Θ and Θ̂ vary by
a constant item, the rest gasdynamic parameters and its derivatives remain constant.
Consequently, in plane flows the coefficients Aij are independent of the angle Θ. The
sign of χ, as stated above, is determined by the direction of the y axis relative to the x
axis. If it is changed to the opposite one, the signs of the polar angles Θ, Θ̂, Ω change
and the direction of the vector n changes either; the formulae (2.7), (3.2) and (3.5) show
that in this case N1 and the curvature Sa remain their values, and N2, N3 and N7 change
their signs. Consequently, when the sign of χ is changed the quantities A11, χA12, χA13,
A15, χA17, χA21, A22, A23, χA25, A27, χA31, A32, A33, χA35, A37 remain unchanged, and
they can depend only on the pressure p, temperature T and the Mach number M of the
upstream flow and the shock inclination angle σ.
If all the basic unevennesses of the incoming flow and the shock curvatures are finite,

the basic unevennesses of the gas flow behind the shock will also be finite quantities
for all values of gasdynamic parameters. This fact is stated in (Mölder 1979). The basic
unevennesses of the gas flow before the shock and its curvatures can become infinite only
at the points of the shock interference with other gasdynamic discontinuities.
Let us give an example of numerical calculations. Let us consider a shock wave in a

gas flow with Mach number M = 5. The calculations were conducted in the limits of a
thermodynamically perfect diatomic gas model (the specific heats ratio γ = 1, 4). In this
case the coefficients Aij (for i 6= 7 and j 6= 7) can also be calculated according to the
formulae cited in (Uskov 1983) and (Adrianov et al. 1995). The values obtained in this
paper and the mentioned above precisely coincide.
The calculations were also conducted in the limits of a thermally perfect gas model.

In this model the thermal Clapeyron equation of gas state is assumed valid, and the
dependences of the specific enthalpy h and the specific entropy s are given by the following
formulae:

h(T ) = R

(
−
A1

T
+A2 lnT +A3T +

A4

2
T 2 +

A5

3
T 3 +

A6

4
T 4 +

A7

5
T 5 +

A8

6
T 6 +B1

)
;

s(T, ρ) = R

(
−

A1

2T 2
−

A2

T
+ (A3 − 1) lnT +A4T +

A5

2
T 2 + · · ·+

A8

5
T 5 +B2 − ln ρ

)
.

The coefficients R, A1, . . . , A8, B1, B2 in these expansions for different gases are cited
in (McBride et al. 1963; McBride, Gordon & Reno 1993). This model was previously
considered by the authors in (Uskov & Mostovykh 2011). In this paper, oxygen is taken
as a calorically imperfect gas; a comparison of its enthalpy and entropy with a diatomic
perfect gas is shown in figure 2.
Figure 3(a–b) shows the dependences of Ai5 = N̂i/Sa, i = 1, 2, 3, for N4 = 0 and

Ai4 = N̂i/N4 i = 1, 2, for Sa = 0 versus the shock inclination angle σ in a uniform up-



18 V. N. Uskov and P. S. Mostovykh

500 1000 1500 2000 2500 3000

0

2000

4000

6000

8000

10000

12000

h 
/ R

 , 
 K

T, K
500 1000 1500 2000 2500 3000

18

20

22

24

26

s /
 R

  +
  l

n 

T, K

(a) (b)

Figure 2. The dependences of the gas specific enthalpy and entropy on its temperature.
Diatomic perfect gas — dotted lines; oxygen in the thermally perfect gas model — solid lines.

stream flow. These ratios depict the effect of the shock curvatures on the basic uneven-
nesses of the flow downstream it. The ratios N̂i/N4 are calculated under the assumption

that the initial flow is parallel to the axis of symmetry (Θ = 0). In this case N̂3/N4 = 0,

i.e. the unevenness N̂3 does not depend on the curvature N4, and the quantities χN̂1/N4,

N̂2/N4 do not depend on the index χ value.

Figure 3(c–f) gives the dependences of Aij = N̂i/Nj , i = 1, 2, 3, j = 1, 2, 3, 7 versus
the shock inclination angle σ. Each of the influence coefficients Aij characterizes the effect

of the unevenness Nj of the upstream flow on the unevenness N̂i of the downstream flow,
under the condition that other Nj , N4 and Sa are equal to zero. The coefficients Ai7 for a
thermodynamically perfect gas are zero. This agrees with the fact that the unevennesses
N1, N2, N3 correspond to the flow describtion in the limits of a closed system of equations
(3.4). The unevenness N7 is not included in that describtion.
So far, the upstream flow unevennesses and the shock curvatures N4 and Sa were as-

sumed to be known. However, the proposed approach can be used for the consideration
of the gasdynamic situations in which one of the basic unevennesses of the flow down-
stream the shock is known. The shock curvature Sa in this case is determined. Examples
of such flows are: the flow around a curved wall (the unevenness N̂2 is known), and the
expiration of a free jet from a nozzle. In the latter case, the flow along the boundary of
the jet approximately may be considered isobaric, N̂1 ≈ 0.
The gas outflow from a conical nozzle is modelled as a flow from a point source (a

cylindrical source in a plane flow and a spherical source in an axisymmetric flow). In this
case, the flow nonisobaric factor in the nozzle is (Uskov & Chernyshov 2006)

N1 =
(1 + δ)ρV 2

pR (1− V 2/a2)
,

here R is the distance from the observation point to the center of the point source; the
streamlines are straight (N2 = 0), the gas rest parameters remain unchanged in the
direction normal to the streamlines (N3 = N7 = 0), the curvature N4 is equal to

N4 =
δ

R sinΘ
,

the velocity polar angleΘ on the nozzle edge coincides with the nozzle opening half–angle,
and the index χ = −1.
Let us consider a free jet outflow from a nozzle in an overexpanded mode (figure 4).

An attached shock wave forms on the nozzle lip A and propagates downstrean in the
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Figure 3. The dependences of the influence coefficients Aij , i = 1, 2, 3, j = 1, 2, 3, 4, 5, 7,
on the shock wave inclination angle σ. The upstream flow Mach number M = 5, pressure
p = 105 Pa, temperature T = 300 K. Diatomic perfect gas — black dotted lines; oxygen in the
thermally perfect gas model — red solid lines.

jet. Let us determine the curvature of this shock Sa in the point of its formation, and
the curvature of the jet boundary. The nonisobaric factor N̂1 is a linear function of Sa.
Assuming the shock curvature Sa to be 0 or 1, and using the specified upstream flow basic
unevennesses, let us calculate the flow unevennesses behind the shock in both cases, using

the algorithm twice. The resulting unevennesses are denoted N̂
(k)
1 , N̂

(k)
2 , N̂

(k)
3 , N̂

(k)
7 , here

k = 0, 1. Since N̂1 = N̂
(0)
1 (1 − Sa) + N̂

(1)
1 Sa = 0, we find Sa = N̂

(0)
1 /

(
N̂

(0)
1 − N̂

(1)
1

)
,

then the basic unevennesses of the flow in the jet are determined.
Figure 5(a) shows the curvature Sa of the shock coming down from the nozzle edge,

multiplied by RA, versus the shock intensity J for the Mach number MA = 2. Here
RA is the distance from the edge of the nozzle to the center of the source. Both plane
and axisymmetric flows are shown. In plane flows the curvature Sa is independent of the
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Figure 4. A free jet outflow from a nozzle in an overexpanded mode.
Solid lines — attached shock wave (s.w.) and jet boundary (j.b.). Dash lines — tangents to

them. V A, V̂A — velocity vectors at the point A.
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Figure 5. The dependences of the dimensionless curvatures of the shock SaRA and the jet

boundary N̂2RA on the edge of the nozzle on the shock intensity. Mach number MA = 2;
plane flow — dotted line; axisymmetric flow with the nozzle opening half–angles ΘA = 4o and
ΘA = 10o — solid lines.

nozzle opening half–angle ΘA. The behaviour of the dependence in the plane flow (δ = 0)
is qualitatively given in the paper (Uskov & Chernyshov 2006).
Similar dependences for the curvature of the jet boundary (the curvature of the stream-

line, coming down from the edge of the nozzle) N̂2RA are shown in figure 5(b). Figures 5
show that for MA = 2 such value J = 4, 125 exists that in its vicinity the shock and the
boundary curvatures grow infinitively. The existence of such J was reported in (Uskov
& Chernyshov 2006).

5. The isolines of gasdynamic parameters in the vicinity of a shock

wave

In order to describe the gas flow in the vicinity of a shock wave let us trace the gasdy-
namic parameters isolines, i.e. curves with a constant value of a gasdynamic parameter
f . In other words, the derivative of the parameter f along the isoline turns to zero:

∂f

∂ξ
= cosαf

∂f

∂ℓ
+ χ sinαf

∂f

∂n
= 0, (5.1)

here ξ is the direction of the tangent to the isoline at the considered point, αf is the
isoline inclination angle with respect to the streamline.
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In this section we consider only strong shocks, all parameters (except the rest enthalpy
h0) are discontinuous on the shock, and the isolines break. Let us define the angles
αf , under which the isolines of various parameters come to the shock surface from the
upstream flow, and the angles α̂f , under which they go out from the shock surface into
the downstream flow. On the shock surface the derivatives in (5.1) are assumed to be
one–sided. The angle αf is measured from the direction ℓ to ξ and is considered positive
if the rotation is in the same direction as the rotation of ℓ to τ . The range of the values
is αf ∈ (σ − π; σ] for the flow upstream the shock and α̂f ∈ (σ − β − π; σ − β] for the
flow downstream the shock wave. Below only the angles α̂f , under which the isolines of
various parameters go into the flow downstream the shock, are studied. For brevity, the
tilde character for angles αf is below omitted.

The condition (5.1) uniquely determines the angle αf value in the mentioned range,
except for the case ∂f/∂ℓ = ∂f/∂n = 0; in the latter case f is constant in the flow field
in the vicinity of the point and the isolines degenerate.

Let us consider the isolines of entropy and the gas flow rest parameters. The gas
flow rest parameters (pressure p0, density ρ0, temperature T0, enthalpy h0), and the gas
entropy s equal to its rest entropy s0, remain constant along the streamlines outside of the
shock surface (Chernyi 1994). Consequently, for these parameters either the streamlines
are isolines and the equalities αp0

= αρ0
= αT0

= αh0
= αs = 0 hold, or the isolines

degenerate.

In (Mölder 1979) thermodynamically perfect gas flows with constant rest enthalpy h0

are considered. It is shown that under these assumptions the gas temperature, enthalpy,
the speed of sound and the Mach number remain constant along the velocity magnitude
isoline (isotach). Let us generalize this result for the flows of thermally perfect, calor-
ically imperfect gas with constant rest enthalpy in the upstream flow. Really, since h0

is constant, the equality N7 = 0 holds according to (3.5); then (4.12) and (4.13) give

N̂7 = 0 and therefore, the gas total enthalpy h0 = const in the whole flow field. The
second formula (3.3) shows that in this case the gas enthalpy h is constant along the
isotach. Since in the thermally perfect gas its enthalpy, temperature and the speed of
sound are uniquely interrelated (appendix A), their isolines and the Mach number M
isolines coincide with the isotachs.

Following (Mölder 1979), let us take isobars (f = p), isopycnics (f = ρ), isotachs
(f = V ) and isoclines (f = Θ) into consideration. The algorithm given in § 4 allows to
determine numerically the derivatives with respect to the natural directions, and therefore
find the streamline downstream the shock curvature N̂2 and the isolines inclination angles
αf from (5.1). As an example, the flows of a diatomic thermodynamically perfect gas
with the specific heats ratio γ = 1, 4 in the vicinity of a concave shock in a uniform
plane upstream flow (N1 = N2 = N3 = N7 = 0) with the Mach numbers M = 1, 5
and M = 3, 0 are considered. The shock curvature Sa is assumed to be constant. The
calculation results in the form of flow patterns are presented in figures 6. The shock
inclination angle σ increases from top to bottom from a minimum value arcsin(1/M) to
π/2. The shock intensity value increases, accordingly, from J = 1 (degenerate shock) to
a maximum value. The streamlines are shown with solid black lines, the dotted lines are
the tangents to them at the points on the shock surface. The open circle point shows the
position of a Crocco point; the streamline outcoming from this point into the downstream
flow is non–curved (Mölder 1979; Uskov 1983; Adrianov et al. 1995): N̂2 = 0. Above the
Crocco point (in case J < JCrocco) the gas velocity inclination angle relative to the
upstream flow increases downstream, below the Crocco point this angle decreases.

The short lines in figures 6 show the isolines directions in the flow downstream the
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Figure 6. The flow patterns in the vicinity of a curved shock wave in a plane uniform initial
flow with the Mach numbers M = 1, 5 (a–d) and M = 3, 0 (e–h).

solid lines — streamlines (the gas flows from left to right), dotted lines — tangents to them on
the shock surface, short lines — isolines of various gasdynamic parameters (a, e: isobars, b, f :
isopycnics, c, g: isotachs, d, h: isoclines);
open circle point — the Crocco point,
closed circle point — the constant pressure point (the Thomas point),
open square point — the point at which the isotach is perpendicular to the streamline,
closed square point — sonic point,
open triangular point — the point at which the isopycnic is perpendicular to the streamline,
closed triangular point — the point at which the flow in the shock wave turns to the maximum
possible angle.

shock, in dependence on the shock inclination angle σ. For the shock close to a degenerate
one, i.e. at J → 1 (the upper edge of the picture), all isolines lie on the shock surface.
For a normal shock wave, i.e., in case σ → π/2 (the bottom edge of the picture), the
isobar, the isopycnic, and the isotach also lie on the shock surface, whereas the isocline
coincides with the straight streamline.
The closed circular point in the figures shows the constant pressure point (the Thomas

point): N̂1 = 0. In this point the gas pressure, density and velocity isolines coincide with
the streamline, and the velocity vector polar angle isoline is perpendicular to it. The shock
intensity at the constant pressure point Jp for plane flows was calculated in (Adrianov
et al. 1995). For arbitrarily curved shocks (including shocks in axisymmetric gas flows)
Mölder et al. (2011) call this point the Thomas point or the generalized constant pressure
point, keeping the index p for its parameters. Above the Thomas point (J < Jp) the gas
flow compressed in the shock wave continues to compress and to decelerate; below the
Thomas point the flow downstream the shock is rarefied and accelerated. At the Crocco
point the isocline lies on the streamline, and the isobar is normal to it. The closed square
markes the sonic point; the downstream flow at this point has the velocity magnitude
equal to the local speed of sound, M̂ = 1. At this point the isocline is perpendicular to the
streamline; this result can be proved analytically from the relations (3.9). At the point
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Figure 7. Dependences of the gas pressure αp, velocity magnitude αV , density αρ and the
velocity vector polar angle αΘ isolines inclination angles downstream the shock wave on the
shock inclination angle σ for a uniform upstream flow with the Mach number M = 3, 0.
a — plane flow; b — axisymmetric flow with Θ = 0, N4 = χSa.

where the flow turns to the maximum possible angle, the isocline lies on the shock surface;
the corresponding point is designated with a closed triangle. The latter two feature
points and the Crocco point are clearly seen in figure 6(d). For larger Mach number
values, including M = 3, 0 in figure 6(h), these three points merge and, consequently, the
isocline inclination angle changes rapidly under small shock inclination angle variation.
Figure 7(a) shows the dependences of the angles αp, αρ, αV and αΘ on the shock

inclination angle σ for plane flows of a diatomic thermodynamically perfect gas with
the Mach number of a uniform upstream flow M = 3, 0 and the specific heats ratio
γ = 1, 4. The dependences αp(σ) and αV (σ) coincide with the corresponding data of
(Mölder 1979), so that they are represented on the graph by the same curves. These
curves were used in the construction of the flow patterns in the vicinity of the shock
wave in figure 6(e–h).
Let us determine the isolines inclination angles for a uniform axisymmetric flow (Θ = 0).

Using the formulae (3.9), (4.12) and (5.1) it can be shown that these angles are deter-
mined by the ratio χN4/Sa only. Figure 7(b) shows these angles for a thermodynamically
perfect gas flow with a Mach number M = 3, 0 for the relation between the shock curva-
tures N4 = χSa.
The calculation showed that at low initial flow velocity (M ≤ 3) use of the calorically

imperfect gas model for oxygen and nitrogen does not lead to any significant deviations
in the isolines inclination angles from the diatomic perfect gas model.
Figure 8 represents the same isolines inclination angles for a larger Mach number

value M = 5, 0 for a diatomic thermodynamically perfect gas and oxygen in the pre-
viously described model. The uniform upstream flow parallel to the axis of symmetry
at different distances from this axis is considered, in which the curvature N4 takes the
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Figure 8. Dependences of the isolines inclination angles on the shock inclination angle σ in a
uniform plane flow (N4 = 0) — black lines; in an axisymmetric flow for the curvature N4 values
N4 = χSa (red lines) and N4 = 10χSa (magenta lines). Upstream flow Mach number M = 5, 0.
Dotted lines — perfect gas, solid lines — model of oxygen for p = 105 Pa, T = 300 K.
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The flow type Criteria ∂M̂/∂τ < 0 ∂M̂/∂τ > 0

I 1a, 2a 0 < α∗

V < π/2 α∗

V < −π/2
II 1b, 2a −π/2 < α∗

V < 0 —
III 1b, 2b α∗

V < −π/2 0 < α∗

V < π/2
IV 1a, 2b — −π/2 < α∗

V < 0

Table 2. Types of flow in the vicinity of the sonic point on a shock wave

values N4 = χSa and N4 = 10χSa. Plane flows are also shown for comparison (N4 = 0).
At this Mach number value, taking of oxygen calorical imperfection into account leads
to a significant amendment to the model of a perfect gas.
The curves 1 and 2 in figures 7, 8 show the angles between the flow velocity behind

the shock V̂ and the shock surface (σ − β) and (σ − β − π) and describe the boundaries
of the region of the angles αf definition. Line 3 in these figures corresponds to the
σ = arcsin(1/M) — the smallest possible angle σ value for a given Mach number.
The vicinity of the sonic point on the shock wave surface is of special interest. In this

point the gas velocity downstream a shock is equal to the local speed of sound (the Mach

number M̂ = 1). In several works, including (Adrianov et al. 1995), the shock intensity
and inclination angle at this point are determined as a function of the upstream flow
Mach number: J = J∗(M), σ = σ∗(M). The parameters related to the sonic point are
denoted by ∗.
In the flow of a thermally perfect gas with constant rest enthalpy the Mach number

along the isotachs remains constant, therefore, the isotach passing through the sonic point
is the sonic line and divides the flow region into the supersonic (M̂ > 1) and subsonic

(M̂ < 1) “patches”. In (Mölder et al. 2011) a classification of flows in the vicinity of
the sonic point is proposed. This classification is based on the relative position of the
outcoming streamline and sonic line.
The type of flow in the vicinity of the sonic point is determined by the following two

criteria:
1) a) subsonic flow is accelerated to supersonic, or

b) supersonic flow is decelerated to subsonic;
2) a) acoustic characteristics emerges from the sonic point in the supersonic flow (at

the right angle to the flow line), or
b) this characteristic degenerates into a point.

The criteria for each type of flow are listed in the first and the second columns of
table 2. The flow types I, II and III were introduced in (Mölder et al. 2011) for shocks
with two positive curvatures, i.e. facing its concavity to the upstream flow. For the shocks
with the negative curvature in the flow plane (meridional half–plane) the flow type IV is
possible; this type is introduced in the present paper. The schemes of the four types of
flow are shown in figure 9.
The stated above criteria for the flow types can be mathematically formulated as

follows:
1) a) in case ∂M̂/∂τ < 0, α∗

V > 0 and in case ∂M̂/∂τ > 0, α∗

V < 0, or

b) in case ∂M̂/∂τ < 0, α∗

V < 0 and in case ∂M̂/∂τ > 0, α∗

V > 0;

2) a) in case ∂M̂/∂τ < 0, α∗

V > −π/2 and in case ∂M̂/∂τ > 0, α∗

V < −π/2, or

b) in case ∂M̂/∂τ < 0, α∗

V < −π/2 and in case ∂M̂/∂τ > 0, α∗

V > −π/2.
Table 2 allows to determine the flow type in accordance with the stated criteria in case
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Figure 9. The schemes of four types of flows in the vicinity of the sonic point on the shock wave
surface. The schemes of the types I, II & III are borrowed from the paper (Mölder et al. 2011).
The upstream gas flow flows from left to right; the horizontal dash–dotted line at the bottom
of the figure — the axis of symmetry; the black line — the shock wave surface (s.s.), the blue
line — the streamline (f.l.), the green line — the sonic line (s.l.), the red lines — the acoustic
characteristics outgoing from the shock surface (a.c.).

the ∂M̂/∂τ sign and the value α∗

V are prescribed (let us note that in (Mölder et al. 2011)
the sign of the angle α∗ is selected the opposite to the sign of α∗

V in this paper).
In case of a uniform upstream flow the velocity polar angle Θ = const. The relations

(2.8) and (2.5) relate the shock curvature Sa with its inclination angle σ derivative:

Sa = χN5 = χ∂Ω/∂τ = ∂σ/∂τ.

In the flow with a given Mach number the Mach number downstream the shock decreases
if the shock inclination angle σ increases (Chernyi 1994); therefore, the sign of Sa is

opposite to the sign of ∂M̂/∂τ (∂M̂/∂τ < 0 on figures 1a and 1b; ∂M̂/∂τ > 0 on
figures 1c and 1d).
Mölder et al. (2011) show the isotach inclination angle α∗

V at the sonic point versus
the upstream uniform flow Mach number M for plane thermodynamically perfect gas
flows (Sb = 0) with Sa > 0. They calculated α∗

V for a number of the ratio Sa/Sb values
for Sa > 0, Sb > 0 in axisymmetric flows. They determined the range of the parameters
M and Sa/Sb values, corresponding to the three different types of flow. The results of
(Mölder et al. 2011) show that at hypersonic speeds the isotach inclination angle α∗

V only
slightly varies if the curvatures ratio Sa/Sb changes. At smaller Mach number values this
dependence is essential.
The angle α∗

V vs. the curvatures ratio Sb/Sa for different upstream flow Mach number
M for a uniform axisymmetric upstream flow is shown in figure 10. In case Sb/Sa ≥ 0
the obtained results are consistent with the results presented in (Mölder et al. 2011) on
figure 3(a, b). The curves have horizontal asymptotes (σ − β − π) in case Sb/Sa → −∞
and (σ− β) in case Sb/Sa → ∞. This result agrees with the fact that on a conical shock
wave (Sa = 0) the isolines coincide with the shock surface (Mölder 1979). If M = 1, the
stated dependence is a step function: the angle α∗

V is equal to −π/2 for Sb/Sa < 3, π/2
for Sb/Sa > 3 and not defined for Sb/Sa = 3.
The transitional states between different types of flow are the situations the sonic line

downstream the shock falls on the streamline (α∗

V = 0) and the sonic line falls on the
acoustic characteristics (α∗

V = −π/2). It can be shown that the curvatures ratios Sb/Sa
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Figure 10. The dependence of the isotach inclination angle to the streamline in the sonic point
on the shock wave α∗

V in a homogeneous axisymmetric flow on the curvatures ratio Sb/Sa for
different values of the upstream flow Mach number. The horizontal asymptotes of the curves are
shown by dash lines. Black dotted lines — thermodynamically perfect gas, red solid lines — a
model of oxygen for p = 105 Pa, T = 300 K (for M ≤ 2 the dependences coincide).

for the angles α∗

V = 0 and α∗

V = −π/2 are given by the following formulae:

Sb

Sa
=

ρ(ûν(uν − ûν) + 2ρ̂ĥρ)

ρ̂2ĥρ sin
2(σ − β)

−
1

sin2(σ − β)
for α∗

V = −π/2; (5.2)

Sb

Sa
=

ρ

ρ̂
− 1 +

ρ(2ûν(uν − ûν) + 3ρ̂ĥρ)

ρ̂2ĥρ sin
2(σ − β)

for α∗

V = 0. (5.3)

The right–hand sides in (5.2) and (5.3) depend on the upstream flow parameters only.
For perfect gas flows, they are determined by its Mach number only; consequently, the
type of flow in the vicinity of the sonic point on the shock is determined by M and Sb/Sa.
The domains of Sb/Sa and M variation corresponding to the four different types of flow
are shown in figure 11. The upper numbers give the types of flow for the shocks incoming
to the axis of symmetry (Sb > 0); the lower numbers — for the shocks outgoing from
the axis (Sb < 0). For Sa, Sb > 0 the figure is consistent with the results of (Mölder
et al. 2011).
In the limit M → 1 it follows from (5.2), (5.3) that the curvatures ratio Sb/Sa → 1 and

3, respectively. This result is valid for a gas with arbitrary thermodynamic properties at
the sonic point on the shock wave. For perfect gas it is numerically obtained in (Mölder
et al. 2011).

6. Conclusions

The first–order problem for plane and axisymmetric flows of non–viscous non–heat-
conductive gas in a state of thermodynamic equilibrium in the vicinity of a shock wave
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Figure 11. Types of flow in the vicinity of the sonic point on the shock wave in the plane Sb/Sa,
M . Black dotted lines — thermodynamically perfect gas, red solid lines — a model of oxygen
for p = 105 Pa, T = 300 K.

is solved. In other words, the space gasdynamic parameters derivatives in the flow on
the downstream side of the shock wave surface are determined. For this purpose the
differential dynamic compatibility conditions on shock waves for gas flows satisfying an
arbitrary thermodynamical equation of state are used. A set of basic flow unevennesses is
singled out: the flow nonisobaric factor along the streamline N1, the streamline curvature
N2, the flow vorticity factor N3, and the flow nonisoenthalpy factor N7. The basic flow
unevennesses are defined in terms of derivatives with respect to natural directions. The
gasdynamic parameters derivatives in an arbitrary point of the flow are expressed through
these unevennesses.
On the basis of the DDCC, the algorithm for the basic unevennesses of the flow down-

stream a shock wave calculation is proposed. In this algorithm, the basic unevennesses
of the flow upstream the shock and its curvatures are supposed known. The influence
coefficients of the shock curvatures and of the basic unevennesses of the initial flow on
the basic flow unevennesses downstream the shock are calculated. The comparison of
results in the thermodynamically perfect gas model and the calorically imperfect gas
model of oxygen is presented. Using the same algorithm for the case of the overexpanded
jet outflow from a nozzle the curvature of the shock, coming down from the edge of the
nozzle, and the curvature of the jet boundary are obtained.
The gas flow in the vicinity of the shock wave is described by the isobars, isopycnics,

isotachs and isoclines for plane and axisymmetric flows of a thermodynamically perfect
gas and oxygen in the thermally perfect gas model. The angles under which the isolines go
out into the flow downstream the shock are calculated. The position of the characteristic
points on the shock surface are determined. In these points the isolines coincide either
with the streamline, or with the perpendicular to it.
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The behaviour of the isolines in the vicinity of the sonic point on the shock surface
is studied. Four possible types of flow in this vicinity are identified. The types of flow
in the M , Sb/Sa plane for any curvatures signs are analytically determined. For shocks
with two positive curvatures the types of flow were numerically established in (Mölder
et al. 2011).

This research is financially supported by the St.–Petersburg State University (project
No 6.50.1556.2013) and the Russian Foundation for Basic Research (project No 12–08–
00826–a).

Appendix. The derivatives of the thermodynamic functions

The dependence of the gas specific enthalpy h̃ = h̃(p, s) on its pressure p and specific
entropy s is a form of the canonical equation of gas state, which gives the full information
on its thermal and calorical properties (Sivukhin 1975; Chernyi 1994). The tilde sign is
used for the enthalpy as a function of the variables p, s. The gas temperature and density
are given by partial derivatives

h̃p =
1

ρ
; h̃s = T. (A 1)

For the mixed derivative h̃ps we have

h̃ps =
∂

∂s

(
1

ρ

) ∣∣∣∣
p=const

=
∂T

∂p

∣∣∣∣
s=const

> 0,

since the adiabatic compression is always accompanied by temperature and pressure in-
crease. Therefore, for a fixed p the derivative h̃p as a function of s increases, and a unique
value of s matches a fixed value of ρ. The specific entropy s and enthalpy h can, conse-
quently, be numerically determined as functions of p and ρ: s(p, ρ), h(p, ρ) = h̃(p, s(p, ρ)).
For the differential of entropy we have

ds = spdp+ sρdρ, (A 2)

and for the speed of sound we obtain

a2 =
∂p

∂ρ

∣∣∣∣
s=const

= −
sρ
sp

. (A 3)

For the density, according to (A 1), we have

1

ρ
=

∂h̃

∂p

∣∣∣∣
s=const

=
∂

∂p
h(p, ρ(p, s))

∣∣∣∣
s=const

= hp + hρ ·
∂ρ

∂p

∣∣∣∣
s=const

= hp +
hρ

a2
,

wherefrom

a2 =
ρhρ

1− ρhp
, hp =

hρsp
sρ

+
1

ρ
. (A 4)

Writing the first formula (A 1) in differentials, we obtain

h̃ppdp+ h̃psds = dh̃p = −
dρ

ρ2
. (A 5)

Comparing (A 5) with (A 2), we obtain expressions for the derivatives of entropy and
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enthalpy:

sp = −
h̃pp

h̃ps

> 0; sρ = −
1

ρ2h̃ps

< 0, hρ = h̃ssρ = Tsρ < 0. (A 6)

Let the gas be thermally perfect, i.e. satisfying the Clapeyron equation of its state:
p = ρRT . In this case the gas enthalpy is the function of its temperature only: h = h(T )
(Sivukhin 1975); therefore

hρ = hT ·
∂T

∂ρ

∣∣∣∣
p=const

= −hT ·
p

ρ2R
= −hT

T

ρ
; hp = hT ·

∂T

∂p

∣∣∣∣
ρ=const

= hT ·
1

ρR
, (A 7)

here hT = dh/dT . Substitution of (A 7) in (A 4) gives for the speed of sound

a =

(
hTRT

hT −R

)1/2

, (A 8)

which is also a function of the gas temperature only.
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ssymmetrischen Überschallströmungen. ZAMM, 55, 281–289. [In German]

Emanuel, G. & Liu, M-S. 1988 Shock wave derivatives. Phys. Fluids, 31, 3625–3633.
Ginsburg, I. P. 1966 Aerogasdynamics. Moscow. [In Russian]
Hayes, W. D. & Probstein, R. F. 1966 Hypersonic Flow Theory, New York and London,

Academic Press.
Hornung, H. G. 1998 Gradients at a curved shock in reacting flow. Shock Waves J., 8, 11–21.
Law, C. K. 1970 Diffraction of strong shock waves by a sharp compressive corner. University

of Toronto Institute for Aerospace Studies (UTIAS) Technical Note No. 150. July.
Lin, C. C. & Rubinov, S. J. 1948 On the flow behind curved shocks. J. Math. and Phys., 27,

105–129.
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