Skip to main content
Log in

A numerical study of oblique shock wave reflections over wedges in an ideal quantum gas

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The various oblique shock wave reflection patterns generated by a moving incident shock on a planar wedge using an ideal quantum gas model are numerically studied using a novel high resolution quantum kinetic flux splitting scheme. With different incident shock Mach numbers and wedge angles as flow parameters, four different types of reflection patterns, namely, the regular reflection, simple Mach reflection, complex Mach reflection and the double Mach reflection as in the classical gas can be classified and observed. Both Bose–Einstein and Fermi–Dirac gases are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Dor G. (1992). Shock wave reflection phenomena. Springer, New-York

    Book  Google Scholar 

  2. Bhatnagar P.L., Gross E.P. and Krook M. (1954). A model for collision process in gases I: small amplitude processes in charged and neutral one component systems. Phys. Rev. 94: 511–525

    Article  Google Scholar 

  3. Chapman S. and Cowling T.G. (1970). The mathematical theory of non-uniform gases. Cambridge University Press, London

    MATH  Google Scholar 

  4. Chou S.Y. and Baganoff D. (1997). Kinetic flux-vector splitting for the Navier-Stokes equations. J. Comput. Phys. 130: 217–230

    Article  Google Scholar 

  5. Deshpande, S.M.: A second order accurate, kinetic-theory based, method for inviscid compressible flows. NASA Langley Technical Paper No. 2613 (1986)

  6. Glaz H.M., Collella P., Glass I.I. and Deschambault R.L. (1985). A numerical study of oblique shock-wave reflections with experimental comparisons. Proc. R. Soc. Lond. A398: 117–140

    Google Scholar 

  7. Hirsch C. (1988). Numerical computation of internal and external flows. Wiley, New York

    MATH  Google Scholar 

  8. Huang K. (1987). Statistical mechanics. Wiley, New York

    MATH  Google Scholar 

  9. Jiang G.-S. and Shu C.-W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126: 202–228

    Article  MathSciNet  Google Scholar 

  10. Kadanoff L.P. and Baym G. (1962). Quantum statistical mechanics, Chap. 6. Benjamin, New York

    MATH  Google Scholar 

  11. Liu X.-D., Osher S. and Chan T. (1994). Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115: 200–212

    Article  MathSciNet  Google Scholar 

  12. Ohwada T. (2002). On the construction of kinetic schemes. J. Comput. Phys. 177: 156–175

    Article  MathSciNet  Google Scholar 

  13. Pathria, R.K.: Statistical mechanics, 2nd edn. Butterworth-Heinemann (1996)

  14. Patterson G.N. (1971). Introduction to the kinetic theory of gas flows. University of Toronto Press, Toronto

    Google Scholar 

  15. Sanders R.H. and Predergast K.H. (1974). The possible relation of the 3-kiloparsec arm to explosions in the galactic nucleus. Astrophys. J. 188: 489

    Article  Google Scholar 

  16. Takayama K. and Jiang Z. (1997). Shock wave reflection over wedges: a benchmark test of CFD and experiments. Shock Waves 7: 191–203

    Article  Google Scholar 

  17. Toro E.F. (1999). Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin

    Book  Google Scholar 

  18. Uehling E.A. and Uhlenbeck G.E. (1933). Transport phenomena in Bose-Einstein and Fermi-Dirac gases. I. Phys. Rev. 43: 552

    Article  Google Scholar 

  19. Xu K. and Prendergast K.H. (1994). Numerical Navier-Stokes solutions from gas kinetic theory. J. Comput. Phys. 114: 9–17

    Article  MathSciNet  Google Scholar 

  20. Xu, K.: Gas-kinetic schemes for unsteady compressible flow simulations. In: Proceedings of the 29th Computational Fluid Dynamics Lecture Series, von Karman Institute for Fluid Dynamics, Rhode-Saint-Geneses. Belgium (1998)

  21. Xu K. (2001). A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171: 289–335

    Article  MathSciNet  Google Scholar 

  22. Yang J.Y. and Shi Y.H. (2006). A kinetic beam scheme for ideal quantum gas dynamics. Proc. R. Soc. Lond A 462: 1553–1572

    MathSciNet  MATH  Google Scholar 

  23. Yang J.Y., Hsieh T.Y. and Shi Y.H. (2007). Kinetic flux splitting schemes for ideal quantum gas dynamics. SIAM J. Scient. Comput. 29(1): 221–244

    Article  MathSciNet  Google Scholar 

  24. Yang J.Y., Hsieh T.Y., Shi Y.H. and Xu K. (2007). High order kinetic flux splitting schemes in general coordinates for ideal quantum gas dynamics. J. Comput. Phys. 227: 967–982

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Yang.

Additional information

Communicated by M.-S. Liou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J.C., Hsieh, T.Y., Yang, J.Y. et al. A numerical study of oblique shock wave reflections over wedges in an ideal quantum gas. Shock Waves 18, 193–204 (2008). https://doi.org/10.1007/s00193-008-0150-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0150-1

Keywords

PACS

Navigation