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Abstract
In this paper we propose a Dirichlet process mixture model for censored survival data
with covariates. This model is suitable in two scenarios. First, this method can be used
to identify clusters determined by both the censored survival data and the predictors.
Second, this method is suitable for highly correlated predictors, in cases when the
usual survival models cannot be implemented because they would be unstable due
to multicollinearity. The Dirichlet process mixture model links a response vector to
covariate data through cluster membership and in this paper this model is extended for
mixtures of Weibull distributions, which can be used to model survival times and also
allow for censoring.We propose two variants of thismodel, onewith a shape parameter
common to all clusters (referred to as a global parameter) for theWeibull distributions
and one with a cluster-specific shape parameter. The first satisfies the proportional
hazard assumption, while the latter is very flexible, as it has the advantage of allowing
estimation of the survival curve whether or not the proportional hazards assumption
is satisfied. We present a simulation study and, to demonstrate the applicability of
the method in practice, a real application to sleep surveys in older women from The
Australian Longitudinal Study on Women’s Health. The method developed in the
paper is available in the R package PReMiuM.
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1 Introduction

We propose a Dirichlet process mixture model for censored survival data with covari-
ates. This model is most useful in two situations.

First of all, this method can be used to identify clusters determined by censored sur-
vival data and explanatory variables. The idea of linking a response vector to covariate
data through cluster membership was proposed initially by several authors including
Dunson et al. (2008), Bigelow and Dunson (2009), Molitor et al. (2010), Papathomas
et al. (2011), and Molitor et al. (2011). We will focus on the latter of these articles,
which refers to this idea as profile regression, where a Dirichlet mixture model is
used for inference on the clusters. This model was implemented in an R package by
Liverani et al. (2015) and it has been employed in a variety of fields (Molitor et al.
2014), including genetics (Papathomas et al. 2012), environmental epidemiology (Pap-
athomas et al. 2011; Pirani et al. 2015; Coker et al. 2016; Liverani et al. 2016) and
occupational epidemiology (Hastie et al. 2013; Mattei et al. 2016). In this paper we
extend this model to survival outcomes with censoring.

Second, the proposed method is suitable when the explanatory variables are multi-
collinear. Multicollinearity, or collinearity, is the existence of near-linear relationships
among the explanatory variables. The high correlation between explanatory variables
can create inaccurate, or unstable, estimates of the regression coefficients, inflate the
standard errors, deflate the partial t-tests, give false, nonsignificant, p-values, and
degrade the predictability of the model. Hence, one of the first steps in a regression
analysis is to determine if multicollinearity is present. Our proposed method is stable
when highly correlated predictors are included in the model, making it a powerful tool
to explore survival datasets with highly correlated predictors.

The model that we propose is essentially a mixture of Weibull distributions and
distributions suitable for the covariates, non-parametrically linking the response and
the predictors through cluster membership. Modelling independently the response and
the covariates is the idea underpinning profile regression as an exploratory method in
the presence of collinearity in the covariates. This modelling choice allows the explo-
ration of the complex relationship between the response and the covariates. Although
the response and the covariates are modelled independently, this clustering method
can uncover linear and non-linear relationships between covariates and response.

This model includes some cluster specific parameters, which characterise the clus-
ters, and some global parameters, which are shared by all clusters. The Weibull
distributions, with cluster-specific scale parameters, can be used to model survival
times and also allow for censoring. We propose two models withWeibull distributions
for the response, one with a global shape parameter for the Weibull distributions and
one with a cluster-specific shape parameter. The first model satisfies the proportional
hazard assumption, which allows for comparisons between clusters. On the other
hand, the latter model has the advantage of allowing the estimation of the survival
curve without having to satisfy the proportional hazards assumption. Therefore, it is a
very flexible model. Suitable distributions for the covariates are the Normal distribu-
tion in the case of continuous explanatory variables and the multinomial distribution
in the case of categorical explanatory variables.
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Clustering method for censored and collinear survival data 37

Kottas (2006) did important early work on the Weibull Dirichlet process mixture
model for unknown survival distributions, although their model was limited to esti-
mating the survival distribution component only and did not extend to regression. In
contrast, our proposed method links the survival outcome to a multivariate profile, and
estimates hazard ratios (in the case where a proportional hazards assumption is satis-
fied) and median survival times. Moreover, the Weibull Dirichlet process mixture by
Kottas (2006) involves mixing on both the shape and scale parameters of the Weibull
kernel, while we also propose and discuss the reduced model satisfying the desirable
assumption of proportional hazards. Another contribution of our paper is the compu-
tation of the posterior predictive distribution of survival time to provide interpretable
results. Finally, our methods are readily available in the R package PReMiuM using
advanced state-of-the-art MCMC algorithms.

In this paper, we apply our model to the analysis of sleep data based on a unique
cohort of very oldwomen fromTheAustralian Longitudinal Study onWomen’sHealth
(ALSWH).We are interested in learning about the relationship between sleep difficulty
and survival in an Australian cohort of old women (Leigh et al. 2016b). Due to the
fact that difficulty in sleeping may be related to additional factors which also affect
survival (for example, Body Mass Index (BMI), comorbidity, sleep medication use,
physical functioning and vitality, mental health), it is also of interest to model the
joint effects of sleep difficulty and these additional covariates on survival, via profile
regression. Previous analyses (Leigh et al. 2015, 2016a) utilised latent class analysis
(LCA) to identify longitudinal patterns (profiles) of sleep difficulty, and then utilised
these classes to predict survival, adjusted for various other factors, as well as the
interaction between the sleep classes and disease count. In the present paper, profiles
are based on the additional covariates as well as sleep difficulty, and thus may better
capture the complex interactions between all covariates of interest. Moreover, only a
single model fit is required rather than a procedure in steps, which might be unable to
model appropriately certain features of the data.

In Sect. 2 we introduce the formulation of the Dirichlet process mixture model and
profile regression. In Sects. 3 and 4 we propose the two new models for censored
survival data with global and cluster-specific shape parameters. In Sect. 5 we provide
a method for the computation of hazard ratios, expected survival time and predictions.
In Sect. 6 we report the results on simulated data and in Sect. 7 the results on the
ALSWH dataset. Some concluding remarks are given in Sect. 8.

2 Profile regression

Profile regression is a Dirichlet process mixture model where the response variable
and the covariates are modelled jointly (Molitor et al. 2010; Liverani et al. 2015).

The Dirichlet process (DP) is a stochastic process used in Bayesian nonparametric
models, particularly in Dirichlet process mixture models. It is a distribution over
distributions, so each draw fromaDirichlet process is itself a distribution. For a random
distribution G to be distributed according to a DP, its marginal distributions have to
be Dirichlet distributed, which is the reason for the name Dirichlet of this process.
Specifically, let H be a distribution over � and α be a positive real number. Then
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38 S. Liverani et al.

for any finite measurable partition A1, . . . , Ar of �, the vector (G(A1), . . . ,G(Ar ))

is random since G is random. We say G is Dirichlet process distributed with base
distribution H and concentration parameter α, written G ∼ DP(α, H), if

(G(A1), . . . ,G(Ar )) ∼ Dir(αH(A1), . . . , αH(Ar ))

for every finite measurable partition A1, . . . , Ar of �. The draws from a DP satisfy a
discreteness property which also implies a clustering property. The discreteness and
clustering properties of the DP play crucial roles in the use of DPs for clustering
via DP mixture models, as described in Teh (2011). The nonparametric nature of
the Dirichlet process translates to mixture models with a countably infinite number
of components. We model a set of observations {y1, . . . , yn} using a set of latent
parameters {θ1, . . . , θn}. Each θi is drawn independently and identically fromG, while
each yi has distribution F(θi ). Because G is discrete, multiple θi ’s can take on the
same value simultaneously, and the above model can be seen as a mixture model,
where yi ’s with the same value of θi belong to the same cluster.

Profile regression is a generalisation of the DP mixture model, where the induced
mixture model is a mixture of two distributions, one for the response vector y and
one for the covariate data x. In particular, we define response data yi and covariate
data xi for each individual i with i = 1, . . . , n. There is also the possibility to include
additional data, wi for each individual, which we will refer to as fixed effects. The
fixed effects are constrained to only have a global (i.e., non-cluster specific) effect
on the response yi and the functional relationship between the response and the fixed
effects is discussed below for specific response models. The mixture model is then
given by

f (xi , yi |φ, θ ,ψ,β, z,wi ) =
∞∑

c=1

ψc fx (xi |zi = c,φc) fy(yi |zi = c, θc,λ,wi ) (1)

where xi = (xi1, . . . , xi P ) is the P-dimensional covariate profile and z = (z1, . . . , zn)
with zi = c is the allocation variable indicating the cluster to which individual i
belongs. The parameter vectors φ and θ are the cluster specific parameters and are
defined in more detail below. The parameter vector ψ = (ψ1, ψ2, . . .) are the cluster
weights and λ are the global parameters linking the fixed effects to the response
variable. An active cluster is a cluster which contains at least one observation. There
are an infinite number of clusters in this model, though a finite data set only exhibits
a finite number of active clusters, which are inferred from the data.

The likelihoods fy and fx depend upon the choice of response and covariate model,
respectively. The covariate model is different depending on the data. For continuous
data, we assume amixture of Gaussian distributions. Under this setting for each cluster
c, the cluster specific parameters are given by φc = (μc, �c), where μc is a mean
vector and �c is a covariance matrix. Under this setting, it follows that

fx (xi |zi = c,φc) = (2π)−
J
2 |�c|− 1

2 exp

{
−1

2
(xi − μc)

��−1
c (xi − μc)

}
. (2)
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Clustering method for censored and collinear survival data 39

For discrete variables, where for each individual i , xi is a vector of J locally
independent discrete categorical random variables, where the number of categories
for covariate j is K j , for j = 1, 2, . . . , J . Then we can write φc = �c =
(�c,1,�c,2 . . . , �c,J ) with �c, j = (φc, j,1, φc, j,2, . . . , φc, j,K j ) and

fx (xi |zi = c,�c) =
J∏

j=1

φc, j,xi, j . (3)

Similarly, for the response model we implement models which are suitable for the
data under study. One simple case is a continuous response variable, in which case the
likelihood for the response model is given by

fy(yi |zi = c, θc,λ,wi ) = 1√
2πσ 2

y

exp

{
− 1

2σ 2
y
(Yi − μi )

2

}
, (4)

where μi = θc + β�wi and λ = (β, σ 2
y ). For both fy and fx we can also make

other modelling choices, like a binary response model, a categorical response model,
Poisson or Binomial mixtures for count data. Liverani et al. (2016) also propose an
extension of this response model to account for spatial correlation. In this paper we
propose a new response model, for censored survival data.

Profile regression as described above is implemented in the R package PReMiuM
(Liverani et al. 2015), along with a range of prior distributions. Inference is made in a
Bayesian framework usingMarkov chainMonte Carlo (MCMC)methods. Hastie et al.
(2015) provide details on assessing lack of convergence for these models. Additional
features are available in the R package, such as two methods for variable selection,
which allow us to determine which covariates actively drive the mixture components,
and which share characteristics common to all components. One of these variable
selection methods is based on the work by Chung and Dunson (2009), a cluster-
specific selection approach which is also applied on the ALSWH sleep data in Sect. 7.
Each cluster c has an associated vector ξc = (ξc,1, ξc,2, . . . , ξc,J ), where ξc, j is a
binary random variable that determines whether covariate j is important to cluster c.
For discrete covariates, we can then define the new composite parameters,

φ∗
c, j,k := ξc, jφc, j,k + (1 − ξc, j )φ0, j,k = (

φc, j,k
)ξc, j

(
φ0, j,k

)(1−ξc, j ) (5)

which replace the cluster specific parameters for discrete covariates defined above.We
assume that, given ρ j , the ξc, j , c = 1, . . . ,C , are independent Bernoulli variables with
ξc, j ∼ Bernoulli(ρ j ). To induce variable selection, we consider a sparsity inducing
prior for ρ j with an atom at zero, so that

ρ j ∼ 1{w j=0}δ0(ρ j ) + 1{w j=1}Beta(αρ, βρ), (6)
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where w j ∼ Bernoulli(pw). By examining the posterior distribution of ρ j we can
ascertain the extent of the contribution of variable j to the clustering: if it has mostly
mass around zero, it is unlikely to be contributing significantly to the clustering.

The MCMC produces a rich posterior output, with a partition of the observations
provided at each iteration. It is therefore necessary to infer a representative partition, as
an effective way to convey the output of the clustering algorithm. It is also of interest to
assess the uncertainty associated with subgroups of this best partition. Moreover, due
to the problem of ‘label switching’, i.e the labels associated with each cluster change
during the MCMC iterations, we can not simply assign each observation to the cluster
thatmaximizes the average posterior probability. One solutionwhich has proved useful
is to summarise the MCMC output in a dissimilarity matrix, where at each iteration
of the sample, we record pairwise cluster membership and construct a score matrix.
Averaging these matrices over the whole MCMC run leads to a similarity matrix S,
which can then be used to identify an optimal partition. Post-processing methods
are also available in the R package PReMiuM and discussed in detail by Liverani
et al. (2015). Molitor et al. (2010) include further discussion on the motivation and
justification of profile regression models.

3 Survival responseWeibull with global shape parameter

We extend the profile regression model described in Sect. 2 for survival data with
censoring, using a mixture of Weibull distributions. In this section, we develop the
model with a global shape parameter for the Weibull distribution.

For survival data, with a survival or censoring time and a censoring indicator, we
have

fy(yi |zi = c, θc,λ,wi ) = h(yi |zi = c, θc, ν,β,wi )
di S(yi |zi = c, θc, ν,β,Wi ) (7)

where h is the hazard function, S is the survival function, λ = (ν,β) are the global
parameters and y is the lifetime of an individual. The censoring indicator di is defined
as follows.

di =
{
0 if the individual is censored or
1 if the individual experiences the event of interest

(8)

with d = ∑n
i=1 di . Survival time has a Weibull distribution if its survival distribution

is given by

S(yi |zi = c, θc, ν,β,wi ) = f (y > yi |θzi , ν,β,wi ) = exp
(−γzi y

ν
i

)
(9)

and its hazard function is given by

h(yi |zi = c, θc, ν,β,wi ) = νγzi y
ν−1
i (10)
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Clustering method for censored and collinear survival data 41

with link function γzi = exp
(
θzi + βTwi

)
. For thismodel the baseline risk is constant.

When ν > 1 the hazard rate increases as time increases, it is constant for ν = 1 and
the hazard rate decreases for ν < 1.

The likelihood is given by

fy(y|.) =
n∏

i=1

h(yi |zi = c, θc, ν,β,wi )
di S(yi |zi = c, θc, ν,β,Wi ) (11)

= νd

(
n∏

i=1

γ di
zi

)
exp

(
−

n∑

i=1

γzi y
ν
i

)
n∏

i=1

(
yν−1
i

)di
. (12)

Therefore, the conditional distribution of ν is given by

f (ν|.) ∝
n∏

i=1

h(yi |zi = c, θc, ν,β,wi )
di S(yi |zi = c, θc, ν,β,Wi )πν(ν) (13)

∝ νd exp

(
−

n∑

i=1

γzi y
ν
i

)
n∏

i=1

(
yν−1
i

)di
πν(ν) (14)

where πν(ν) is the log-concave prior distribution of ν. It can be shown that

∂2 log f (ν|.)
∂ν2

< 0

which is satisfied if and only if f (ν|.) is log-concave (Borzadaran and Borzadaran
2011). Given the log concavity of f (ν|.), we can use an adaptive rejection sampling
algorithm to sample from the posterior distribution of ν (Gilks and Wild 1992). We
set the prior distribution for ν, πν(ν), to be a Gamma distribution with parameters aν

and bν , so we require that aν ≥ 1 to ensure the log-concavity of πν(ν).
To implement the adaptive rejection sampler (Gilks andWild 1992), we require the

logarithm of a function proportional to the distribution of interest and its derivative.
This function and its derivative are given by the following,

log f (ν|.) ∝ d log ν −
n∑

i=1

γzi y
ν
i + ν

n∑

i=1

di log yi + (aν − 1) log ν − bνν (15)

and

∂ log f (ν|.)
∂ν

∝ d

ν
−

n∑

i=1

γzi y
ν
i log yi +

n∑

i=1

di log yi + aν − 1

ν
− bν . (16)

The model developed in this section has a global shape parameter for each Weibull
distribution in the mixture. The advantage of this model is that the assumption of pro-
portional hazards holds and we can compute hazard ratios between different clusters.
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42 S. Liverani et al.

However, for the cases where the assumption of proportional hazards is untenable, we
develop a more flexible model, in the Sect. 4, with cluster-specific shape parameters.

4 Survival responseWeibull with cluster-specific shape parameter

Here we propose a mixture of Weibull distributions with cluster-specific scale and
shape parameters. This model is more flexible than the model proposed in Sect. 3
because it does not require the assumptionof proportional hazards to hold. In thismodel
the shape parameters of the Weibull distributions are now a vector ν = (ν1, ν2, . . .)

of cluster-specific shape parameters. Therefore, the components of the mixture of
Weibull distributions take the following form,

fy(yi |zi = c, θc, νc,λ,wi ) = h(yi |zi = c, θc, νc,β,wi )
di S(yi |zi = c, θc, νc,β,Wi )

(17)
where h is the hazard function, S is the survival function, λ = β are the global
parameters, θc, νc and φc are the cluster-specific parameters and yi is the lifetime
of an individual. It follows that the survival time Y has a Weibull distribution if its
survival distribution is now given by

S(yi |zi = c, θc, νzi ,β,wi ) = f (y > yi |θzi , νzi ,β,wi ) = exp
(
−γzi y

νzi
i

)
(18)

and its hazard function is as follows

h(yi |zi = c, θc, νzi ,β,wi ) = νzi γzi y
νzi −1
i (19)

with link function γzi = exp
(
θzi + βTwi

)
. For thismodel the baseline risk is constant.

The loglikelihood is given by

log fy(y|.) =
n∑

i=1

log

((
νzi γzi y

νzi −1
i

)di
exp

(−γzi y
ν
i

))
(20)

=
n∑

i=1

(
di

(
log νzi + log γzi + (νzi − 1) log yi

) − γzi y
ν
i

)
. (21)

The conditional distribution of νc depends only on the data in cluster c. We define the
indicator dlc for the censored data in cluster c.

dlc =
{
0 if the individual l in cluster c is censored
1 if the individual l in cluster c experiences the event.

(22)
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with dc = ∑nc
l=1 dlc and

∑C
c=1 nc = n. It follows that the conditional distribution of

νc, for zi = c , is given by

log f (νc|.) ∝
nc∑

l=1

(
dlc

(
log νc + log γzl + (νc − 1) log yl

) − γzl y
νc
i

) + logπνc (νc) (23)

∝ (
log νc + log γzl

)
dc + (νc − 1)

nc∑

l=1

dlc log yl −
nc∑

l=1

γzl y
νc
i + logπνc (νc)

(24)

where πν(νc) is the log-concave prior distribution of νc. It can be easily shown that

∂2 log f (ν|.)
∂ν2

< 0

which, as before, is satisfied if and only if f (ν|.) is log-concave. Given the log con-
cavity of f (ν|.), as for the case of the global shape parameter, it follows that we can
use an adaptive rejection sampling algorithm for ν. We set the prior distribution for
each shape parameter νc to be a Gamma distribution with parameter aν and bν , and
require that aν ≥ 1 to ensure the log-concavity of πν(νc). As before, to implement the
adaptive rejection sampler, we require the logarithm of a function proportional to the
distribution of interest and its derivative, which are given by

log f (νc|.) ∝ dc log νc + νc

nc∑

l=1

dlc log yl −
nc∑

l=1

γzl y
νc
l + (aν − 1) log νc − bννc(25)

and

∂ log f (νc|.)
∂νc

∝ dc
νc

−
nc∑

l=1

dlc log yl +
nc∑

l=1

γzl y
νc
l log yl + aν − 1

νc
− bν . (26)

This mixture model with cluster-specific shape parameters can fit the data well
in each cluster, but the assumption of proportional hazards does not hold. The addi-
tional challenge is how to compare observations in different clusters informatively. A
proposal for this is given in the following section.

5 Computing and interpreting the hazard ratios and the expected
survival time

The main inferential objective is to compare the clusters identified by profile
regression. This is straightforward when the shape parameter is global, but cluster
comparisons require careful consideration when the shape parameter is cluster spe-
cific. An alternative approach is to compare the clusters using the predicted survival
time for individuals that belong to different clusters.
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44 S. Liverani et al.

When there is a global shape parameter ν we can easily compute hazard ratios.
The ratio of the hazard functions of two different clusters, with all fixed effects wi

constant, is given by

h(yi |c1)
h(yi |c2) = νγc1 y

ν−1
i

νγc2 y
ν−1
i

= ν exp(θc1 + βTwi )y
ν−1
i

ν exp(θc2 + βTwi )y
ν−1
i

= exp(θc1)

exp(θc2)
= exp(θc1 − θc2).

(27)
Moreover, we can compute the hazard ratios for the fixed effects. The ratio of the
hazard functions of two different values of w j in cluster ck is given by

h(yi |ck, w j = x1)

h(yi |ck, w j = x2)
= ν exp(θck + β1w1 + · · · + βpwp)y

ν−1
i

ν exp(θck + β1w1 + · · · + βpwp)y
ν−1
i

= exp(β j (x1 − x2)).

(28)
The fixed effects β j are global parameters, so they take the same value within each
cluster. Therefore, we can write

h(yi |ck, w j = x1)

h(yi |ck, w j = x2)
= h(y′

i |cl , w j = x1)

h(y′
i |cl , w j = x2)

= exp(β j (x1 − x2)) (29)

for any l and k. These ratios are constant proportions that depend only on the covariate
w j and not on time. If x1 = x2 + 1 then the hazard ratio simplifies to exp(β j ).

In the case of cluster-specific shape parameter ν, first we check whether we can
assume proportional hazards. The assumption that the proportional hazards stay con-
stant over time can be inspected by looking at a graph of the logarithm of the estimated
cumulative hazard function. This plot is also known as a log-log survival plot. The
proportional hazard assumption is evidenced by the difference between the logarithms
of the hazards for any two clusters not changing over time, or equally by the difference
between the logarithms of the cumulative hazard functions being constant. If propor-
tional hazards are a sensible assumption, we can compute the hazards as above. If
the hypothesis of proportional hazards is not tenable, we can interpret the results by
computing the mean survival time. The mean survival time for cluster c is given by

E(Y ) = γ
−1/νc
c �(1 + 1/νc) (30)

where �(.) represents the Gamma function.

5.1 Predictions

Posterior predictive distributions are computed for the survival time and the hazard
ratios. At each sweep, the allocation of a predictive profile to a cluster c is sampled
from the mixture weights, according to the covariates xpred of the predictive profile.
These draws give us a posterior predictive distribution for the θ̂s , which is the predicted
value of θzs for the predictive profile s at the r -th iteration of the MCMC.
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Clustering method for censored and collinear survival data 45

Table 1 Values of the parameter θ and φ for each cluster

Cluster θc x1 x2 x3 x4 x5

1 −6.5 0.8, 0.2 0.2, 0.8 0.1, 0.1, 0.8 0.1, 0.8, 0.1 0.25, 0.25, 0.25, 0.25

2 −4 0.2, 0.8 0.2, 0.8 0.1, 0.1, 0.8 0.1, 0.8, 0.1 0.1, 0.1, 0.1, 0.7

3 −2 0.8, 0.2 0.8, 0.2 0.8, 0.1, 0.1 0.8, 0.1, 0.1 0.25, 0.25, 0.25, 0.25

We can then compute the predicted hazard ratios for each iteration r of the MCMC
as

exp(θ̂rs )

exp(θ̂r1 )
(31)

where θ̂1 is the baseline hazard function, for example chosen as corresponding to the
lowest values of all risk factors.

We can also compute the posterior predictive distribution of survival time as the
expectation of the Weibull distribution, which is given by

ŷpred = min(γ̂ −1/ν̄c
c,r �(1 + 1/ν̄c), T

∗)

where T ∗ is the maximum observed survival time before censoring, ν̄ is the posterior

mean of νc and γ̂ c,r = exp(θ̂rs + β̂
T
w) with β̂ the posterior mean of β.

6 Application to simulated data

First we demonstrate the proposedmethod on two simulated datasets and then compare
the results to ridge regression, a commonly used method to deal with collinearity.

6.1 Clustering censored survival data

We demonstrate the proposed method on two datasets, each with three clusters of 250
observations. We simulated the response variables y from a Weibull distribution and
five covariates x1, x2,…, x5 are drawn from multinomial distributions with 2, 2, 3, 3,
and 4 categories respectively. There are no fixed effects. The values of the parameters
θ and φ for each cluster c are given in Table 1. The shape parameter for the first
dataset is νc = 2 for all clusters c = 1, 2, 3. The second dataset has cluster-specific
shape parameters, so ν1 = 2, ν2 = 1 and ν3 = 3. There are no missing values but all
observations are censored at y = 50 if the event has not happened yet.

We analyse the datasets using the proposed survival profile regression, implemented
in the R package PReMiuM (Liverani et al. 2015)with 2000 iterations of burn in period
and 2000 iterations after burn in. Good convergence (and mixing) of MCMC output
was achieved within a few hundred iterations (based on visual diagnosis of MCMC
output for model parameters, not shown).
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Fig. 1 The posterior distribution of ν for the first dataset (left hand side) and ν for the second dataset (right
hand side)
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Fig. 2 Survival probability for the two simulated datasets. Each survival function corresponds to a different
cluster

The first dataset was analysed using the model with global shape parameter, while
the second was analysed using a cluster-specific shape parameter. The posterior dis-
tributions are consistent with the generating values provided in Table 1 and they are
shown in the Appendix. We show here the posterior distribution of ν for the first
dataset and the posterior distribution of ν for the second dataset in Fig. 1. The survival
probability over time for the three clusters is given in Fig. 2.

As discussed, we could compute hazard ratios for the first dataset as we have
assumed a global shape parameter. However, for the second dataset, generated with
cluster-specific parameters, the analysis has allowed the shape parameter to be cluster
specific and found that it was different for the three clusters. The log cumulative
hazard function, shown in Fig. 3, shows that the assumption of proportional hazards
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Fig. 3 Log cumulative hazard for the three clusters of the second dataset

does not hold, and therefore we cannot compute hazard ratios meaningfully. Instead,
for example, we can compare the clusters and interpret the results using the posterior
survival time.

6.2 Comparison with ridge regression

We compare our clustering method to ridge regression (Gray 1992; Xue et al. 2007),
a method suitable for collinear survival data. We generated 50 datasets with three
2-dimensional clusters, where the two variables are highly correlated within each
cluster. The three clusters, of 300, 400 and 500 observations each, are generated
from a bivariate Normal distribution with correlation of 0.95. The survival time is
also generated from a Normal distribution. A censoring variable is generated from a
Binomial distribution with p = 0.9, so only about 10

As a measure of accuracy for profile regression and ridge regression, we compare
their predictive power using the rootmean square error (RMSE) of the predicted values
with respect to the observed outcome. This measure of goodness of fit is given by

RMSE =
√∑n

i=1

(
yi − ŷi

)2

n
(32)

where ŷi denotes the mean of the posterior predictive distribution for the survival time
for observation i . Table 2 shows the mean and the standard deviation of the RMSE
for the 50 simulated datasets. The precision of the in-sample predicted survival times
obtainedwith profile regressionwas higher than the one obtainedwith ridge regression.
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Table 2 Mean and standard
deviation of the RMSE of the
predicted values with respect to
the observed outcome when
using profile regression and
ridge regression

Mean (RMSE) SD (RMSE)

Profile regression 1.91 0.09

Ridge regression 7.43 0.01

7 Application to the ALSWH sleep data

We apply our two methods to The Australian Longitudinal Study on Women’s Health
(ALSWH), a longitudinal study of over 40,000 women, consisting of three cohorts.
The women were randomly selected from the Australian national health insurance
database (Medicare),with oversamplingofwomen fromrural and remote areas to allow
adequate numbers for statistical comparisons to be made. At baseline, in 1996, the
cohorts, known according to the year the women were born as ‘1973–78’, ‘1946–51’,
and ‘1921–26’, were aged 18–23, 45–50, and 70–75. Follow-up omnibus style surveys
were mailed out every three years. The ALSWH explores factors that influence health
among women who are broadly representative of the entire Australian population,
and is the largest project of its kind ever conducted in Australia. The current analysis
focuses on data from the oldest cohort, born between 1921–26, who completed the
baseline survey in 1996, and who first completed the sleep questionnaire 3 years later
at Survey 2 (N = 10076).

We carried out the analysis of the data using the proposed survival profile regression.
The response variable of interest is survival, measured in years from Survey 2. Deaths
were ascertained from theNationalDeath Index (Powers et al. 2000). The data cover 16
years after the survey and there is significant censoring: 97 women were not followed
up in any survey and 5144 were still alive at the last survey. Sleep difficulty was
measured using items from theNHP (NottinghamHealth Profile) Sleep subscale (Hunt
et al. 1981), as follows:

1. Do you wake in the early hours of the morning? (early)
2. Do you lie awake most of the night? (lying)
3. Do you take a long time to get to sleep? (long)
4. Do you sleep badly at night? (bad)

We will refer to these sleep items using the words provided in the parenthesis next
to each item. The answers to these questions were coded as no = 0 and yes = 1.
We also surveyed use of sleep medication (meds), first measured at Survey 2 (referred
to as ’baseline’ sleep difficulty). Other covariates of interest, measured at baseline,
included comorbidity count (comorb, classified as 0, 1–2, and 3 or more1), marital
status (ms, classified as married/de facto, separated/divorced, widowed, never mar-
ried), area of residence (area, classified as Major Cities of Australia, Inner Regional
Australia, Outer Regional Australia, Remote/Very Remote Australia) (Department

1 Women were questioned about diagnosed medical conditions, including diabetes, arthritis, heart disease,
hypertension, asthma, bronchitis/emphysema, stroke, osteoporosis and cancer. The total number of reported
diseases at baseline was categorised as none, 1–2, or 3 or more. These three categories were utilised to
reflect the varying severity of disease and comorbid conditions (no disease, disease with no or only a single
comorbid condition, and multiple comorbid conditions).
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Fig. 4 Log cumulative hazard function for the clusters

of Health and Aged Care 2001), highest obtained educational status (edu, classified
as none, school/higher school certificate, trade/diploma, higher education), self-rated
health (srgood, classified as excellent/very good/good or fair/poor), Short FormHealth
Survey (SF36) (Ware et al. 1994)measures of physical functioning (pfq), mental health
(mhq) and vitality (vtq, classified on its quartiles), and the body mass index (bmi, clas-
sified as underweight, normal weight, overweight or obese). Age (years) at baseline
was also included as a fixed effect. Due to the fact that the survival profile regression
and sleep/disease profiles are estimated simultaneously in the current analysis, we
restricted the profiles to baseline data only (as opposed to longitudinal), to avoid the
situation where missing data due to death at later surveys might dominate the resultant
profiles. However, prior work (Leigh et al. 2015) investigating longitudinal patterns
of sleep difficulty has shown that sleep difficulty patterns remain stable over time, and
thus the baseline values are fairly representative of the women’s sleep patterns over
time.

We obtained fifteen clusters. The credible interval for β is (0.14,0.18). Figure 4
shows that the log cumulative hazard function does not support the assumption of
proportional hazards and thus a cluster-specific shape parameter was used in the mod-
elling. Therefore we do not compute hazard ratios but analyse the data using survival
times. The cluster sizes and the posterior means of the parameters θ and φ are given
in Table 3, with the clusters ordered according to their estimated mean survival time.
Figures 5 and 6 show the posterior survival probabilities for the clusters. It can be
seen that the survival functions for the first five clusters are distinct, while they are
clustered together and overlapping for the remaining clusters.
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Fig. 5 Survival probability for the first 5 clusters and the last cluster. The gray area highlights the span of
the survival probability for all clusters

Fig. 6 Survival probability for all clusters except the first five. The gray area highlights the span of the
survival probability for all clusters

Figure 7 shows the boxplots for the posterior survival time for the fifteen clusters.
The overall median is also shown in the plot, allowing a comparison with the deviation
from the median of the posterior survival time for each cluster.
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Fig. 7 Posterior distribution of the survival time since Survey 2 for each cluster. The dashed horizontal line
is the overall median survival time

We also carried out variable selection. Values of ρ close to 1 indicate the variable is
significant for the clustering, while values close to zero indicate it is not. The posterior
distribution for ρ showed that two of the covariates, ms and area, were not relevant
for the clustering model, since the posterior distribution of ρ for these two variables
was heavily distributed close to zero. This is demonstrated in Fig. 8, which shows the
posterior distribution of ρ for marital status and area, as well as example distributions
of ρ for variables which are important for the model (early and lying). The distribution
of ρ for these latter two variables is distributed closer to 1.

We propose the use of a heatmap as the most immediate way to visualise the
clustering and associated covariate patterns. Figure 9 shows a summary table of the
survival time and the posterior distribution of the covariates in each cluster. Each
row represents a cluster. The columns represents, respectively, the mean survival time
and each covariate included in the analysis. The colour of each cell in the matrix
corresponds to a quintile of the distribution for that variable (ie. by column). The
clusters are ordered as in Table 3 by survival time, from the shortest to the longest.
Note that the colours in the matrix do not become darker (or lighter) in a smooth
manner, suggesting a complex relationship between survival time and the covariates
considered. For example, we can see that higher levels of physical functioning and
vitality are generally associated with longer average survival times. However, there are
several exceptions to this, and we can see complex non-linear relationships between
survival time and the other covariates (Table 4).

We then exclude the covariates which are not driving the clustering process, as
identified by looking at the posterior distribution of ρ. Each value in the heatmap gives
the quintiles of the distribution, therefore summarising the clusters. It can be noted how
the relationships between the covariates are complex and could not have been easily
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Fig. 8 Posterior distribution of the parameter ρ for four covariates: early, lying, ms and area

learnt using other methods. We can see that there are three clusters (3, 10 and 15) with
overall poor sleep difficulty patterns. Of these clusters, two (10 and 15) correspond
to long median survival times, while one of them (3) corresponds to a shorter median
survival time. Three other clusters had individuals with greater sleep difficulty patterns
in just some of the domains (clusters 5, 9 and 13). Moreover, we can see how these
clusters are also associated with other covariates such as medication, high BMI or low
levels of vitality and physical activity. The cluster with the lowest survival had a high
probability of comorbidities, but reported no sleep difficulty. Cluster 3, which reported
sleep difficulty and the 3rd shortest median survival, did not exhibit high probability of
comorbidities, however they scored low on all QoL covariates, and were likely to have
higher BMIs. The two other clusters with greatest sleep difficulty, 10 and 15, exhibited
good self-rated health, low to moderate likelihood of using sleep meds, cluster 10 did
not score high on all quality of life (QoL) items but cluster 15 did, and neither exhibited
high BMIs. Cluster 13 endorsed ’taking a long time to get to sleep’, and also were
likely to use meds, have high QoL, and good self-rated health. Cluster 9 endorsed
’early waking’, had good self-rated health but moderate QoLmeasures. Many clusters
were characterised by low probability of sleep difficulty across all items.
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Fig. 9 Heatmap summary table of the clusters. Each row represents a cluster. The columns represents,
respectively, the mean survival time and each covariate included in the analysis. The colour of each cell in
the matrix corresponds to a quintile of the distribution for that variable (ie. by column). The clusters are
ordered as in Table 3 by survival time, from the shortest to the longest

We can thus learn and visualise how the posterior distribution of median survival
time changes depending on the values of different covariates. For example, Fig. 10
shows the posterior predictive distributions for three profiles of women who answer
yes to the question ‘Do you wake in the early hours of the morning?’ (early = 1). For
the first profile the individual is healthy and their sleep patterns are good based on
their answers (no) to the other items of the Nottingham Health Profile (lying = 0, long
= 0, bad = 0). For the second profile, they did not answer the other sleep questions
(lying = NA, long = NA, bad = NA) but they are healthy. For the third profile, we
only know that they wake up early. The posterior predictive distributions of these
three profiles allow us to make inference on the median survival times for specific
individuals, or groups of individuals, and shed light on the potentially complex true
relationsips between covariates and survival, as highlighted by the multimodality of
the posterior predictive distributions shown in Fig. 10.
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Table 4 Posterior mean of the
probabilities of φ for the first
simulated dataset

Covariate Category Cluster 1 Cluster 2 Cluster 3

x1 0 0.73 0.77 0.26

1 0.27 0.23 0.74

x2 0 0.22 0.78 0.20

1 0.78 0.22 0.80

x3 0 0.12 0.79 0.15

1 0.09 0.08 0.09

2 0.78 0.13 0.76

x4 0 0.12 0.78 0.10

1 0.81 0.10 0.82

2 0.07 0.12 0.08

x5 0 0.21 0.20 0.14

1 0.27 0.24 0.09

2 0.22 0.29 0.14

3 0.31 0.27 0.63

Fig. 10 Posterior predictive distributions for three profiles of interest. The three profiles show the posterior
distribution for predictive profiles for individuals who replied yes to the question ’Do you wake in the early
hours of the morning?’. For the first profile on the left hand side we also know that the individual is healthy
and their sleep patterns are good otherwise (lying = no, long = no, bad = no). For the second profile, we
have no knowledge of how they answered the other sleep questions (lying = NA, long = NA, bad = NA) but
know that they are healthy. For the third profile, we have no knowledge about the individual apart from the
fact that they wake up early

8 Discussion

We have proposed a mixture model for the survival response and covariates, where the
response variable has a Weibull distribution and it allows for censoring. In the model
we allow for the shape parameter of theWeibull distribution to be shared by all clusters
(therefore satisfying the condition of proportional hazards) but also proposed a more
general model with cluster-specific shape parameters. Moreover, we have discussed
the challenges of predictive profiles in the context of survival modelling and we have
made these methods easily available in the R package PReMiuM.

We have used the latter model to analyse data from The Australian Longitudinal
Study on Women’s Health and have demonstrated how useful inference can be drawn
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Fig. 11 Theposterior distribution of θ and the posterior distribution of the survival time for the first simulated
dataset
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Fig. 12 Posterior distribution of θ and the posterior distribution of the survival time for the second simulated
dataset

using our proposedmodels.Aprevious analysis (Leigh et al. 2015),which clustered the
women based only on the sleep difficulty questions, found four clusters, correspond-
ing to no sleep difficulty (answered no to all questions on sleep), trouble sleeping
(answered yes to all questions on sleep), early wakers, and trouble falling asleep. The
current clustering also identified clusters characterised by low sleep difficulty, trou-
ble sleeping, and a cluster defined by taking a long time to get to sleep (those who
answered yes to whether they take a long time to get to sleep). In the current analysis,
many more clusters were identified as additional covariate data was also allowed to
inform the clustering (Figs. 11, 12).

Leigh et al. (2016a, b) found that, unadjusted for covariates, those with mild sleep
difficulty had lower hazard of death than those without sleep difficulty, while the
most troubled sleepers had higher hazard of death. After adjusting for covariates,
the troubled sleepers did not have greater hazard of death, and those with mild sleep
difficulty (early wakers and trouble falling asleep) still had lower hazard of death. Also
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significant in the models were disease count, BMI, education, physical functioning,
self-rated health, marital status and area. The effect of those covariates, in conjunction
with sleep, led to many more clusters being identified in the current analysis. We
observe that greater sleep difficulty can be related to both longer and shorter survival,
with different patterns in the covariates. This may be attributable to the difference in
the effect of trouble sleeping with and without covariate adjustment in the previous
models. Furthermore, a previous analysis (Leigh et al. 2015) could not account for
the interaction between sleep and each covariate of interest. The current analysis
however takes into account the multivariate relationships between all variables, and
leads to interesting insights. For example, previousworkLeigh et al. (2016b) found that
BMI was significant for survival when modelling as a predictor along side sleep, with
underweight related to greater hazard of death, overweight greater hazard of death, and
non significant results for obese women. However, BMI may also be interrelated with
sleep, for instance obesity is related to sleep apnoea,which can cause sleep disturbance.
While we see one class with high BMI and poor sleep and shorter survival (cluster 3),
the other clusters with the greatest sleep difficulty do not have higher BMIs, and also
have longer survival. It is possible that the relationship between greater sleep difficulty
and survival in cluster 3 is explained by the highBMI,whereas the relationship between
sleep difficulty and lower hazard of death in clusters 10 and 15 is explained by healthier
BMI (and better self-rated health etc.).

Moreover, in previous work clustering was conducted prior to regression on the sur-
vival outcome, and thus missing covariate data patterns related to survival may have
influenced class membership. Thus, the clusters themselves may have also included
information about the survival outcome, and thus possibly biased the subsequent
regression results. The current analysis used only baseline data, thus the clusters them-
selves are not dominated by missing data.

A limitation of our model is that in its present formulation does not incorporate
covariate information collected after the baseline, which is the objective for our future
work.
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Fig. 13 Violin plot of the posterior predictive distribution for four predictive profiles: (0,0,0,0,0), (0,0,0,0,1),
(0,1,2,2,0) and (1,1,1,1,3) for the second simulated dataset

Appendix: Additional results from the simulation study

In this Appendix we provide additional plots showing the posterior distribution for
some of the parameters for the simulated data in Sect. 6.

We also show in Fig. 13 the posterior predictive distribution for four predictive
profiles. These are combinations of values of the covariates for which we compute the
posterior predictive distribution of θc or the survival time.
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