Skip to main content
Log in

In vitro functional response of human tendon cells to different dosages of low-frequency pulsed electromagnetic field

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Chronic tendinopathy is a degenerative process causing pain and disability. Current treatments include biophysical therapies, such as pulsed electromagnetic fields (PEMF). The aim of this study was to compare, for the first time, the functional in vitro response of human tendon cells to different dosages of PEMF, varying in field intensity and duration and number of exposures.

Methods

Tendon cells, isolated from human semitendinosus and gracilis tendons (hTCs; n = 6), were exposed to different PEMF treatments (1.5 or 3 mT for 8 or 12 h, single or repeated treatments). Scleraxis (SCX), COL1A1, COL3A1 and vascular endothelial growth factor-A (VEGF-A) expression and cytokine production were assessed.

Results

None of the different dosages provoked apoptotic events. Proliferation of hTCs was enhanced by all treatments, whereas only 3 mT-PEMF treatment increased cell viability. However, the single 1.5 mT-PEMF treatment elicited the highest up-regulation of SCX, VEGF-A and COL1A1 expression, and it significantly reduced COL3A1 expression with respect to untreated cells. The treated hTCs showed a significantly higher release of IL-1β, IL-6, IL-10 and TGF-β. Interestingly, the repeated 1.5 mT-PEMF significantly further increased IL-10 production.

Conclusions

1.5 mT-PEMF treatment was able to give the best results in in vitro healthy human tendon cell culture. Although the clinical relevance is not direct, this investigation should be considered an attempt to clarify the effect of different PEMF protocols on tendon cells, in particular focusing on the potential applicability of this cell source for regenerative medicine purpose, both in surgical and in conservative treatment for tendon disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PEMF:

Pulsed electromagnetic fields

hTCs:

Human tendon cells

References

  1. Assiotis A, Sachinis NP, Chalidis BE (2012) Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions: a prospective clinical study and review of the literature. J Orthop Surg Res 7:24

    Article  PubMed Central  PubMed  Google Scholar 

  2. Benazzo F, Cadossi M, Cavani F, Fini M, Giavaresi G, Setti S, Cadossi R, Giardino R (2008) Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. J Orthop Res 26:631–642

    Article  PubMed  Google Scholar 

  3. Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR (2001) Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am 83-A:1514–1523

    CAS  PubMed  Google Scholar 

  4. de Girolamo L, Stanco D, Galliera E, Vigano M, Colombini A, Setti S, Vianello E, Corsi Romanelli MM, Sansone V (2013) Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells. Cell Biochem Biophys 66:697–708

    Article  PubMed  Google Scholar 

  5. De Mattei M, Fini M, Setti S, Ongaro A, Gemmati D, Stabellini G, Pellati A, Caruso A (2007) Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. Osteoarthr Cartil 15:163–168

    Article  PubMed  Google Scholar 

  6. De Mattei M, Pasello M, Pellati A, Stabellini G, Massari L, Gemmati D, Caruso A (2003) Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connect Tissue Res 44:154–159

    Article  PubMed  Google Scholar 

  7. de Mos M, van El B, DeGroot J, Jahr H, van Schie HT, van Arkel ER, Tol H, Heijboer R, van Osch GJ, Verhaar JA (2007) Achilles tendinosis: changes in biochemical composition and collagen turnover rate. Am J Sports Med 35:1549–1556

    Article  PubMed  Google Scholar 

  8. Denaro V, Ruzzini L, Barnaba SA, Longo UG, Campi S, Maffulli N, Sgambato A (2011) Effect of pulsed electromagnetic fields on human tenocyte cultures from supraspinatus and quadriceps tendons. Am J Phys Med Rehabil 90:119–127

    Article  PubMed  Google Scholar 

  9. Dingemanse R, Randsdorp M, Koes BW, Huisstede BM (2013) Evidence for the effectiveness of electrophysical modalities for treatment of medial and lateral epicondylitis: a systematic review. Br J Sports Med 48:957–965

    Article  PubMed  Google Scholar 

  10. Fassina L, Visai L, Benazzo F, Benedetti L, Calligaro A, De Angelis MG, Farina A, Maliardi V, Magenes G (2006) Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold. Tissue Eng 12:1985–1999

    Article  CAS  PubMed  Google Scholar 

  11. Galliera E, Corsi MM, Banfi G (2012) Platelet rich plasma therapy: inflammatory molecules involved in tissue healing. J Biol Regul Homeost Agents 26:35S–42S

    CAS  PubMed  Google Scholar 

  12. Ganesan K, Gengadharan AC, Balachandran C, Manohar BM, Puvanakrishnan R (2009) Low frequency pulsed electromagnetic field—a viable alternative therapy for arthritis. Indian J Exp Biol 47:939–948

    CAS  PubMed  Google Scholar 

  13. Gomez-Ochoa I, Gomez-Ochoa P, Gomez-Casal F, Cativiela E, Larrad-Mur L (2011) Pulsed electromagnetic fields decrease proinflammatory cytokine secretion (IL-1beta and TNF-alpha) on human fibroblast-like cell culture. Rheumatol Int 31:1283–1289

    Article  CAS  PubMed  Google Scholar 

  14. Hosaka Y, Sakamoto Y, Kirisawa R, Watanabe T, Ueda H, Takehana K, Yamaguchi M (2004) Distribution of TNF receptors and TNF receptor-associated intracellular signaling factors on equine tendinocytes in vitro. Jpn J Vet Res 52:135–144

    PubMed  Google Scholar 

  15. Ibrahim MS, Khan MA, Nizam I, Haddad FS (2013) Peri-operative interventions producing better functional outcomes and enhanced recovery following total hip and knee arthroplasty: an evidence-based review. BMC Med 11:37

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ireland D, Harrall R, Curry V, Holloway G, Hackney R, Hazleman B, Riley G (2001) Multiple changes in gene expression in chronic human Achilles tendinopathy. Matrix Biol 20:159–169

    Article  CAS  PubMed  Google Scholar 

  17. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207:267–274

    Article  CAS  PubMed  Google Scholar 

  18. Lui PP, Chan LS, Lee YW, Fu SC, Chan KM (2010) Sustained expression of proteoglycans and collagen type III/type I ratio in a calcified tendinopathy model. Rheumatology (Oxf) 49:231–239

    Article  CAS  Google Scholar 

  19. Maffulli N, Ewen SW, Waterston SW, Reaper J, Barrass V (2000) Tenocytes from ruptured and tendinopathic achilles tendons produce greater quantities of type III collagen than tenocytes from normal achilles tendons. An in vitro model of human tendon healing. Am J Sports Med 28:499–505

    CAS  PubMed  Google Scholar 

  20. Marcheggiani Muccioli GM, Grassi A, Setti S, Filardo G, Zambelli L, Bonanzinga T, Rimondi E, Busacca M, Zaffagnini S (2013) Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: pulsed electromagnetic fields therapy. Eur J Radiol 82:530–537

    Article  CAS  PubMed  Google Scholar 

  21. Markov MS, Colbert AP (2000) Magnetic and electromagnetic field therapy. J Back Musculoskelet Rehabil 15:17–29

    CAS  PubMed  Google Scholar 

  22. Moretti B, Notarnicola A, Moretti L, Setti S, De Terlizzi F, Pesce V, Patella V (2012) I-ONE therapy in patients undergoing total knee arthroplasty: a prospective, randomized and controlled study. BMC Musculoskelet Disord 13:88

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ongaro A, Varani K, Masieri FF, Pellati A, Massari L, Cadossi R, Vincenzi F, Borea PA, Fini M, Caruso A, De Mattei M (2012) Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts. J Cell Physiol 227:2461–2469

    Article  CAS  PubMed  Google Scholar 

  24. Pan Y, Dong Y, Hou W, Ji Z, Zhi K, Yin Z, Wen H, Chen Y (2013) Effects of PEMF on microcirculation and angiogenesis in a model of acute hindlimb ischemia in diabetic rats. Bioelectromagnetics 34:180–188

    Article  CAS  PubMed  Google Scholar 

  25. Pezzetti F, De Mattei M, Caruso A, Cadossi R, Zucchini P, Carinci F, Traina GC, Sollazzo V (1999) Effects of pulsed electromagnetic fields on human chondrocytes: an in vitro study. Calcif Tissue Int 65:396–401

    Article  CAS  PubMed  Google Scholar 

  26. Rees JD, Stride M, Scott A (2013) Tendons—time to revisit inflammation. Br J Sports Med. doi:10.1136/bjsports-2012-091957

    Google Scholar 

  27. Ricchetti ET, Reddy SC, Ansorge HL, Zgonis MH, Van Kleunen JP, Liechty KW, Soslowsky LJ, Beredjiklian PK (2008) Effect of interleukin-10 overexpression on the properties of healing tendon in a murine patellar tendon model. J Hand Surg Am 33:1843–1852

    Article  PubMed  Google Scholar 

  28. Riley GP, Harrall RL, Constant CR, Chard MD, Cawston TE, Hazleman BL (1994) Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis. Ann Rheum Dis 53:359–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Rodriguez-De la Fuente AO, Alcocer-Gonzalez JM, Heredia-Rojas JA, Rodriguez-Padilla C, Rodriguez-Flores LE, Santoyo-Stephano MA, Castaneda-Garza E, Tamez-Guerra RS (2010) Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study. Cell Biol Int Rep 19:e00014

    Google Scholar 

  30. Ross CL, Harrison BS (2013) Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages. J Inflamm Res 6:45–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Rui YF, Lui PP, Li G, Fu SC, Lee YW, Chan KM (2010) Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Eng Part A 16:1549–1558

    Article  CAS  PubMed  Google Scholar 

  32. Schulze-Tanzil G, Al-Sadi O, Wiegand E, Ertel W, Busch C, Kohl B, Pufe T (2011) The role of pro-inflammatory and immunoregulatory cytokines in tendon healing and rupture: new insights. Scand J Med Sci Sports 21:337–351

    Article  CAS  PubMed  Google Scholar 

  33. Schulze-Tanzil G, Zreiqat H, Sabat R, Kohl B, Halder A, Muller RD, John T (2009) Interleukin-10 and articular cartilage: experimental therapeutical approaches in cartilage disorders. Curr Gene Ther 9:306–315

    Article  CAS  PubMed  Google Scholar 

  34. Shi HF, Xiong J, Chen YX, Wang JF, Qiu XS, Wang YH, Qiu Y (2013) Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: a prospective randomized controlled study. BMC Musculoskelet Disord 14:35

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sollazzo V, Palmieri A, Pezzetti F, Massari L, Carinci F (2010) Effects of pulsed electromagnetic fields on human osteoblastlike cells (MG-63): a pilot study. Clin Orthop Relat Res 468:2260–2277

    Article  PubMed Central  PubMed  Google Scholar 

  36. Strauch B, Patel MK, Rosen DJ, Mahadevia S, Brindzei N, Pilla AA (2006) Pulsed magnetic field therapy increases tensile strength in a rat Achilles’ tendon repair model. J Hand Surg Am 31:1131–1135

    Article  PubMed  Google Scholar 

  37. Suzuki K, Nakaji S, Yamada M, Totsuka M, Sato K, Sugawara K (2002) Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev 8:6–48

    PubMed  Google Scholar 

  38. Varani K, Gessi S, Merighi S, Iannotta V, Cattabriga E, Spisani S, Cadossi R, Borea PA (2002) Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. Br J Pharmacol 136:57–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R (2008) Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br J Dermatol 158:1189–1196

    Article  CAS  PubMed  Google Scholar 

  40. Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, Cadossi R, Goldring MB, Borea PA, Varani K (2013) Pulsed electromagnetic fields increased the anti-inflammatory effect of A(2)A and A(3) adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One 8:e65561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    CAS  PubMed  Google Scholar 

  42. Wojciak B, Crossan JF (1993) The accumulation of inflammatory cells in synovial sheath and epitenon during adhesion formation in healing rat flexor tendons. Clin Exp Immunol 93:108–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Yost MG, Liburdy RP (1992) Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Lett 296:117–122

    Article  CAS  PubMed  Google Scholar 

  44. Zorzi C, Dall’Oca C, Cadossi R, Setti S (2007) Effects of pulsed electromagnetic fields on patients’ recovery after arthroscopic surgery: prospective, randomized and double-blind study. Knee Surg Sports Traumatol Arthrosc 15:830–834

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Authors thank Dr. Alessandra Colombini for her precious help in RT-PCR analyses. The study has been partially supported by IGEA SpA, Clinical Biophysics, Carpi (Italy), and by the Italian Ministry of Health (Ricerca Corrente L1006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. de Girolamo.

Additional information

M. Viganò and E. Galliera have contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Girolamo, L., Viganò, M., Galliera, E. et al. In vitro functional response of human tendon cells to different dosages of low-frequency pulsed electromagnetic field. Knee Surg Sports Traumatol Arthrosc 23, 3443–3453 (2015). https://doi.org/10.1007/s00167-014-3143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3143-x

Keywords

Navigation