Skip to main content
Log in

The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

A steep tibial slope may contribute to anterior cruciate ligament (ACL)-injuries, a higher degree of instability in the case of ACL insufficiency, and recurrent instability after ACL reconstruction. A better understanding of the significance of the tibial slope could improve the development of ACL injury screening and prevention programmes, might serve as a basis for individually adapted rehabilitation programmes after ACL reconstruction and could clarify the role of slope-decreasing osteotomies in the treatment of ACL insufficiency. This article summarizes and discusses the current published literature on these topics.

Methods

A comprehensive review of the MEDLINE database was carried out to identify relevant articles using multiple different keywords (e.g. ‘tibial slope’, ‘anterior cruciate ligament’, ‘osteotomy’, and ‘knee instability’). The reference lists of the reviewed articles were searched for additional relevant articles.

Results

In cadaveric studies, an artificially increased tibial slope produced an anterior shift of the tibia relative to the femur. While mathematical models additionally demonstrated increased strain in the ACL, cadaveric studies have not confirmed these findings. There is some evidence that a steep tibial slope represents a risk factor for non-contact ACL injuries. MRI-based studies indicate that a steep slope of the lateral tibial plateau might specifically be responsible for this injury mechanism. The influence of the tibial slope on outcomes after ACL reconstruction and the role of slope-decreasing osteotomies in the treatment of ACL insufficiency remain unclear.

Conclusion

The role of the tibial slope in sustaining and treating ACL injuries is not well understood. Characterizing the tibial plateau surface with a single slope measurement represents an insufficient approximation of its three-dimensionality, and the biomechanical impact of the tibial slope likely is more complex than previously appreciated.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agneskirchner JD, Hurschler C, Stukenborg-Colsman C, Imhoff AB, Lobenhoffer P (2004) Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004. Arch Orthop Trauma Surg 124(9):575–584

    Article  PubMed  CAS  Google Scholar 

  2. Amendola A (2003) The role of osteotomy in the multiple ligament injured knee. Arthroscopy 19(Suppl 1):11–13

    PubMed  Google Scholar 

  3. Arthur A, LaPrade RF, Agel J (2007) Proximal tibial opening wedge osteotomy as the initial treatment for chronic posterolateral corner deficiency in the varus knee: a prospective clinical study. Am J Sports Med 35(11):1844–1850

    Article  PubMed  Google Scholar 

  4. Beynnon B, Yu J, Huston D, Fleming B, Johnson R, Haugh L, Pope MH (1996) A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis. J Biomech Eng 118(2):227–239

    Article  PubMed  CAS  Google Scholar 

  5. Beynnon BD, Fleming BC, Labovitch R, Parsons B (2002) Chronic anterior cruciate ligament deficiency is associated with increased anterior translation of the tibia during the transition from non-weightbearing to weightbearing. J Orthop Res 20(2):332–337

    Article  PubMed  Google Scholar 

  6. Bisson LJ, Gurske-DePerio J (2010) Axial and sagittal knee geometry as a risk factor for noncontact anterior cruciate ligament tear: a case-control study. Arthroscopy 26(7):901–906

    Article  PubMed  Google Scholar 

  7. Boden BP, Breit I, Sheehan FT (2009) Tibiofemoral alignment: contributing factors to noncontact anterior cruciate ligament injury. J Bone Jt Surg Am 91(10):2381–2389

    Article  Google Scholar 

  8. Boden BP, Sheehan FT, Torg JS, Hewett TE (2010) Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Surg 18(9):520–527

    PubMed  Google Scholar 

  9. Bonin N, Ait Si Selmi T, Dejour D, Neyret P (2004) Knee para-articular flexion and extension osteotomies in adults. Orthopade 33(2):193–200

    Article  PubMed  CAS  Google Scholar 

  10. Bonin N, Ait Si Selmi T, Donell ST, Dejour H, Neyret P (2004) Anterior cruciate reconstruction combined with valgus upper tibial osteotomy: 12 years follow-up. Knee 11(6):431–437

    Article  PubMed  CAS  Google Scholar 

  11. Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22(8):894–899

    Article  PubMed  Google Scholar 

  12. Brazier J, Migaud H, Gougeon F, Cotten A, Fontaine C, Duquennoy A (1996) Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot 82(3):195–200

    PubMed  CAS  Google Scholar 

  13. Brouwer RW, Bierma-Zeinstra SM, van Koeveringe AJ, Verhaar JA (2005) Patellar height and the inclination of the tibial plateau after high tibial osteotomy. The open versus the closed-wedge technique. J Bone Jt Surg Br 87(9):1227–1232

    Article  CAS  Google Scholar 

  14. Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Jt Surg Am 62(2):259–270

    CAS  Google Scholar 

  15. Chan SC, Seedhom BB (1995) The effect of the geometry of the tibia on prediction of the cruciate ligament forces: a theoretical analysis. Proc Inst Mech Eng H 209(1):17–30

    PubMed  CAS  Google Scholar 

  16. Chiu KY, Zhang SD, Zhang GH (2000) Posterior slope of tibial plateau in Chinese. J Arthroplast 15(2):224–227

    Article  CAS  Google Scholar 

  17. Coventry MB, Ilstrup DM, Wallrichs SL (1993) Proximal tibial osteotomy. A critical long-term study of eighty-seven cases. J Bone Jt Surg Am 75(2):196–201

    CAS  Google Scholar 

  18. Dejour D, Bonin N, Locatelli N (2000) Tibial antirecurvatum osteotomies. Oper Tech Sports Med 8(1):67–70

    Article  Google Scholar 

  19. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Jt Surg Br 76(5):745–749

    CAS  Google Scholar 

  20. Dejour H, Neyret P, Boileau P, Donell ST (1994) Anterior cruciate reconstruction combined with valgus tibial osteotomy. Clin Orthop Relat Res 299:220–228

    PubMed  Google Scholar 

  21. Dejour H, Walch G, Chambat P, Ranger P (1988) Active subluxation in extension: a new concept of study of the ACL deficient knee. Am J Knee Surg 1:204–211

    Google Scholar 

  22. DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32(2):477–483

    Article  PubMed  Google Scholar 

  23. El-Azab H, Klabklay P, Paul J, Imhoff AB, Hinterwimmer S (2009) Patellar height and posterior tibial slope after open- and closed-wedge high tibial osteotomy: a radiological study on 100 patients. Am J Sports Med 38(2):323–329

    Article  PubMed  Google Scholar 

  24. Fening SD, Kovacic J, Kambic H, McLean S, Scott J, Miniaci A (2008) The effects of modified posterior tibial slope on anterior cruciate ligament strain and knee kinematics: a human cadaveric study. J Knee Surg 21(3):205–211

    Article  PubMed  Google Scholar 

  25. Fleming BC, Renstrom PA, Beynnon BD, Engstrom B, Peura GD, Badger GJ, Johnson RJ (2001) The effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech 34(2):163–170

    Article  PubMed  CAS  Google Scholar 

  26. Fukubayashi T, Torzilli PA, Sherman MF, Warren RF (1982) An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Jt Surg Am 64(2):258–264

    CAS  Google Scholar 

  27. Galano GJ, Suero EM, Citak M, Wickiewicz T, Pearle AD (2011) Relationship of native tibial plateau anatomy with stability testing in the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc. doi:101007/s00167-011-1854-9

    PubMed  Google Scholar 

  28. Genin P, Weill G, Julliard R (1993) The tibial slope. Proposal for a measurement method. J Radiol 74(1):27–33

    PubMed  CAS  Google Scholar 

  29. Giffin JR, Shannon FJ (2007) The role of the high tibial osteotomy in the unstable knee. Sports Med Arthrosc 15(1):23–31

    Article  PubMed  Google Scholar 

  30. Giffin JR, Stabile KJ, Zantop T, Vogrin TM, Woo SL, Harner CD (2007) Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Am J Sports Med 35(9):1443–1449

    Article  PubMed  Google Scholar 

  31. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32(2):376–382

    Article  PubMed  Google Scholar 

  32. Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, Garrick JG, Hewett TE, Huston L, Ireland ML, Johnson RJ, Kibler WB, Lephart S, Lewis JL, Lindenfeld TN, Mandelbaum BR, Marchak P, Teitz CC, Wojtys EM (2000) Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 8(3):141–150

    PubMed  CAS  Google Scholar 

  33. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, Dick RW, Engebretsen L, Garrett WE Jr, Hannafin JA, Hewett TE, Huston LJ, Ireland ML, Johnson RJ, Lephart S, Mandelbaum BR, Mann BJ, Marks PH, Marshall SW, Myklebust G, Noyes FR, Powers C, Shields C Jr, Shultz SJ, Silvers H, Slauterbeck J, Taylor DC, Teitz CC, Wojtys EM, Yu B (2006) Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med 34(9):1512–1532

    Article  PubMed  Google Scholar 

  34. Grood ES, Noyes FR, Butler DL, Suntay WJ (1981) Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J Bone Jt Surg Am 63(8):1257–1269

    CAS  Google Scholar 

  35. Han HS, Chang CB, Seong SC, Lee S, Lee MC (2008) Evaluation of anatomic references for tibial sagittal alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 16(4):373–377

    Article  PubMed  Google Scholar 

  36. Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC Jr, Mansouri H, Dabezies E (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Jt Surg Am 90(12):2724–2734

    Article  Google Scholar 

  37. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr, Dabezies E, Beynnon BD (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62

    Article  PubMed  Google Scholar 

  38. Hernigou P (2002) Open wedge tibial osteotomy: combined coronal and sagittal correction. Knee 9(1):15–20

    Article  PubMed  Google Scholar 

  39. Hernigou P, Medevielle D, Debeyre J, Goutallier D (1987) Proximal tibial osteotomy for osteoarthritis with varus deformity. A ten to thirteen-year follow-up study. J Bone Jt Surg Am 69(3):332–354

    CAS  Google Scholar 

  40. Hinterwimmer S, Beitzel K, Paul J, Kirchhoff C, Sauerschnig M, von Eisenhart-Rothe R, Imhoff AB (2011) Control of posterior tibial slope and patellar height in open-wedge valgus high tibial osteotomy. Am J Sports Med 39(4):851–856

    Article  PubMed  Google Scholar 

  41. Hinterwimmer S, Rauch A, Kohn L, Imhoff AB (2010) High tibial osteotomy for anteromedial or posterolateral knee instability. Arthroskopie 23(1):14–22

    Article  Google Scholar 

  42. Hohmann E, Bryant A (2007) Closing or opening wedge high tibial osteotomy: watch out for the slope. Oper Tech Orthop 17(1):38–45

    Article  Google Scholar 

  43. Hohmann E, Bryant A, Imhoff AB (2006) The effect of closed wedge high tibial osteotomy on tibial slope: a radiographic study. Knee Surg Sports Traumatol Arthrosc 14(5):454–459

    Article  PubMed  Google Scholar 

  44. Hohmann E, Bryant A, Reaburn P, Tetsworth K (2010) Does posterior tibial slope influence knee functionality in the anterior cruciate ligament-deficient and anterior cruciate ligament-reconstructed knee? Arthroscopy 26(11):1496–1502

    Article  PubMed  Google Scholar 

  45. Hohmann E, Bryant A, Reaburn P, Tetsworth K (2011) Is there a correlation between posterior tibial slope and non-contact anterior cruciate ligament injuries? Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):109–114

    Article  Google Scholar 

  46. Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469:2377–2384

    Article  PubMed  CAS  Google Scholar 

  47. Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP (2009) Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res 467:2066–2072

    Article  PubMed  Google Scholar 

  48. Imhoff AB, Linke RD, Agneskirchner J (2004) Corrective osteotomy in primary varus, double varus and triple varus knee instability with cruciate ligament replacement. Orthopade 33(2):201–207

    Article  PubMed  CAS  Google Scholar 

  49. Imran A, O’Connor JJ (1997) Theoretical estimates of cruciate ligament forces: effects of tibial surface geometry and ligament orientations. Proc Inst Mech Eng H 211(6):425–439

    PubMed  CAS  Google Scholar 

  50. Jenny JY, Rapp E, Kehr P (1997) Proximal tibial meniscal slope: a comparison with the bone slope. Rev Chir Orthop Reparatrice Appar Mot 84(5):435–438

    PubMed  CAS  Google Scholar 

  51. Julliard R, Genin P, Weil G, Palmkrantz P (1993) The median functional slope of the tibia. Principle. Technique of measurement. Value. Interest. Rev Chir Orthop Reparatrice Appar Mot 79(8):625–634

    PubMed  CAS  Google Scholar 

  52. Jung KA, Lee SC, Hwang SH, Song MB (2009) ACL injury while jumping rope in a patient with an unintended increase in the tibial slope after an opening wedge high tibial osteotomy. Arch Orthop Trauma Surg 129(8):1077–1080

    Article  PubMed  Google Scholar 

  53. Kendoff D, Lo D, Goleski P, Warkentine B, O’Loughlin PF, Pearle AD (2008) Open wedge tibial osteotomies influence on axial rotation and tibial slope. Knee Surg Sports Traumatol Arthrosc 16(10):904–910

    Article  PubMed  CAS  Google Scholar 

  54. Kessler MA, Burkart A, Martinek V, Beer A, Imhoff AB (2003) Development of a 3-dimensional method to determine the tibial slope with multislice-CT. Z Orthop Ihre Grenzgeb 141(2):143–147

    Article  PubMed  CAS  Google Scholar 

  55. Khan MS, Seon JK, Song EK (2011) Risk factors for anterior cruciate ligament injury: assessment of tibial plateau anatomic variables on conventional MRI using a new combined method. Int Orthop 35(8):1251–1256

    Article  PubMed  Google Scholar 

  56. Kim SE, Pozzi A, Kowaleski MP, Lewis DD (2008) Tibial osteotomies for cranial cruciate ligament insufficiency in dogs. Vet Surg 37(2):111–125

    Article  PubMed  Google Scholar 

  57. Kostogiannis I, Sward P, Neuman P, Friden T, Roos H (2011) The influence of posterior-inferior tibial slope in ACL injury. Knee Surg Sports Traumatol Arthrosc 19(4):592–597

    Article  PubMed  Google Scholar 

  58. Kuwano T, Urabe K, Miura H, Nagamine R, Matsuda S, Satomura M, Sasaki T, Sakai S, Honda H, Iwamoto Y (2005) Importance of the lateral anatomic tibial slope as a guide to the tibial cut in total knee arthroplasty in Japanese patients. J Orthop Sci 10(1):42–47

    Article  PubMed  Google Scholar 

  59. Lattermann C, Jakob RP (1996) High tibial osteotomy alone or combined with ligament reconstruction in anterior cruciate ligament-deficient knees. Knee Surg Sports Traumatol Arthrosc 4(1):32–38

    Article  PubMed  CAS  Google Scholar 

  60. Lerat JL, Moyen B, Garin C, Mandrino A, Besse JL, Brunet-Guedj E (1993) Anterior laxity and internal arthritis of the knee. Results of the reconstruction of the anterior cruciate ligament associated with tibial osteotomy. Rev Chir Orthop Reparatrice Appar Mot 79(5):365–374

    PubMed  CAS  Google Scholar 

  61. Levy IM, Torzilli PA, Gould JD, Warren RF (1989) The effect of lateral meniscectomy on motion of the knee. J Bone Jt Surg Am 71(3):401–406

    CAS  Google Scholar 

  62. Levy IM, Torzilli PA, Warren RF (1982) The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Jt Surg Am 64(6):883–888

    CAS  Google Scholar 

  63. Li G, Rudy TW, Allen C, Sakane M, Woo SL (1998) Effect of combined axial compressive and anterior tibial loads on in situ forces in the anterior cruciate ligament: a porcine study. J Orthop Res 16(1):122–127

    Article  PubMed  CAS  Google Scholar 

  64. Liu W, Maitland ME (2003) Influence of anthropometric and mechanical variations on functional instability in the ACL-deficient knee. Ann Biomed Eng 31(10):1153–1161

    Article  PubMed  Google Scholar 

  65. Markolf KL, Bargar WL, Shoemaker SC, Amstutz HC (1981) The role of joint load in knee stability. J Bone Jt Surg Am 63(4):570–585

    CAS  Google Scholar 

  66. Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13(6):930–935

    Article  PubMed  CAS  Google Scholar 

  67. Martineau PA, Fening SD, Miniaci A (2010) Anterior opening wedge high tibial osteotomy: the effect of increasing posterior tibial slope on ligament strain. Can J Surg 53(4):261–267

    PubMed  Google Scholar 

  68. Matsuda S, Miura H, Nagamine R, Urabe K, Ikenoue T, Okazaki K, Iwamoto Y (1999) Posterior tibial slope in the normal and varus knee. Am J Knee Surg 12(3):165–168

    PubMed  CAS  Google Scholar 

  69. McLean SG, Lucey SM, Rohrer S, Brandon C (2010) Knee joint anatomy predicts high-risk in vivo dynamic landing knee biomechanics. Clin Biomech (Bristol, Avon) 25(8):781–788

    Google Scholar 

  70. McLean SG, Oh YK, Palmer ML, Lucey SM, Lucarelli DG, Ashton-Miller JA, Wojtys EM (2011) The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. J Bone Jt Surg Am 93(14):1310–1317

    Article  Google Scholar 

  71. Meister K, Talley MC, Horodyski MB, Indelicato PA, Hartzel JS, Batts J (1998) Caudal slope of the tibia and its relationship to noncontact injuries to the ACL. Am J Knee Surg 11(4):217–219

    PubMed  CAS  Google Scholar 

  72. Meyer EG, Haut RC (2005) Excessive compression of the human tibio-femoral joint causes ACL rupture. J Biomech 38(11):2311–2316

    Article  PubMed  Google Scholar 

  73. More RC, Karras BT, Neiman R, Fritschy D, Woo SL, Daniel DM (1993) Hamstrings–an anterior cruciate ligament protagonist. An in vitro study. Am J Sports Med 21(2):231–237

    Article  PubMed  CAS  Google Scholar 

  74. Musahl V, Ayeni OR, Citak M, Irrgang JJ, Pearle AD, Wickiewicz TL (2010) The influence of bony morphology on the magnitude of the pivot shift. Knee Surg Sports Traumatol Arthrosc 18(9):1232–1238

    Article  PubMed  Google Scholar 

  75. Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38(8):1591–1597

    Article  PubMed  Google Scholar 

  76. Naudie D, Bourne RB, Rorabeck CH, Bourne TJ (1999) Survivorship of the high tibial valgus osteotomy. A 10- to -22-year followup study. Clin Orthop Relat Res 367:18–27

    Article  PubMed  Google Scholar 

  77. Naudie DD, Amendola A, Fowler PJ (2004) Opening wedge high tibial osteotomy for symptomatic hyperextension-varus thrust. Am J Sports Med 32(1):60–70

    Article  PubMed  Google Scholar 

  78. Neyret P, Zuppi G, Ait Si Selmi T (2000) Tibial deflexion osteotomy. Oper Tech Sports Med 8(1):61–66

    Article  Google Scholar 

  79. Noyes FR, Barber-Westin SD (1996) Surgical restoration to treat chronic deficiency of the posterolateral complex and cruciate ligaments of the knee joint. Am J Sports Med 24(4):415–426

    Article  PubMed  CAS  Google Scholar 

  80. Noyes FR, Barber-Westin SD, Hewett TE (2000) High tibial osteotomy and ligament reconstruction for varus angulated anterior cruciate ligament-deficient knees. Am J Sports Med 28(3):282–296

    PubMed  CAS  Google Scholar 

  81. Noyes FR, Barber SD, Simon R (1993) High tibial osteotomy and ligament reconstruction in varus angulated, anterior cruciate ligament-deficient knees. A two- to seven-year follow-up study. Am J Sports Med 21(1):2–12

    Article  PubMed  CAS  Google Scholar 

  82. Noyes FR, Goebel SX, West J (2005) Opening wedge tibial osteotomy: the 3-triangle method to correct axial alignment and tibial slope. Am J Sports Med 33(3):378–387

    Article  PubMed  Google Scholar 

  83. Pandy MG, Shelburne KB (1997) Dependence of cruciate-ligament loading on muscle forces and external load. J Biomech 30(10):1015–1024

    Article  PubMed  CAS  Google Scholar 

  84. Renstrom P, Arms SW, Stanwyck TS, Johnson RJ, Pope MH (1986) Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med 14(1):83–87

    Article  PubMed  CAS  Google Scholar 

  85. Savarese E, Bisicchia S, Romeo R, Amendola A (2011) Role of high tibial osteotomy in chronic injuries of posterior cruciate ligament and posterolateral corner. J Orthop Traumatol 12(1):1–17

    Article  PubMed  Google Scholar 

  86. Shao Q, MacLeod TD, Manal K, Buchanan TS (2011) Estimation of ligament loading and anterior tibial translation in healthy and ACL-deficient knees during gait and the influence of increasing tibial slope using EMG-driven approach. Ann Biomed Eng 39(1):110–121

    Article  PubMed  Google Scholar 

  87. Shelburne KB, Kim HJ, Sterett WI, Pandy MG (2011) Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res 29(2):223–231

    Article  PubMed  Google Scholar 

  88. Shelburne KB, Torry MR, Pandy MG (2006) Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res 24(10):1983–1990

    Article  PubMed  Google Scholar 

  89. Shoemaker SC, Markolf KL (1986) The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J Bone Jt Surg Am 68(1):71–79

    CAS  Google Scholar 

  90. Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43(9):1702–1707

    Article  PubMed  CAS  Google Scholar 

  91. Slocum B, Devine T (1984) Cranial tibial wedge osteotomy: a technique for eliminating cranial tibial thrust in cranial cruciate ligament repair. J Am Vet Med Assoc 184(5):564–569

    PubMed  CAS  Google Scholar 

  92. Slocum B, Slocum TD (1993) Tibial plateau leveling osteotomy for repair of cranial cruciate ligament rupture in the canine. Vet Clin North Am Small Anim Pract 23(4):777–795

    PubMed  CAS  Google Scholar 

  93. Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15(3):207–213

    Article  PubMed  CAS  Google Scholar 

  94. Sonnery-Cottet B, Archbold P, Cucurulo T, Fayard JM, Bortolletto J, Thaunat M, Prost T, Chambat P (2011) The influence of the tibial slope and the size of the intercondylar notch on rupture of the anterior cruciate ligament. J Bone Jt Surg Br 93(11):1475–1478

    Article  CAS  Google Scholar 

  95. Sprenger TR, Doerzbacher JF (2003) Tibial osteotomy for the treatment of varus gonarthrosis. Survival and failure analysis to twenty-two years. J Bone Jt Surg Am 85-A(3):469–474

    Google Scholar 

  96. Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? a case-control study. Knee Surg Sports Traumatol Arthrosc 16(2):112–117

    Article  PubMed  Google Scholar 

  97. Takatsu T, Itokazu M, Shimizu K, Brown TD (1998) The function of posterior tilt of the tibial component following posterior cruciate ligament-retaining total knee arthroplasty. Bull Hosp Jt Dis 57(4):195–201

    PubMed  CAS  Google Scholar 

  98. Terauchi M, Hatayama K, Yanagisawa S, Saito K, Takagishi K (2011) Sagittal alignment of the knee and Its relationship to noncontact anterior cruciate ligament injuries. Am J Sports Med 39(5):1090–1094

    Article  PubMed  Google Scholar 

  99. Todd MS, Lalliss S, Garcia E, DeBerardino TM, Cameron KL (2010) The relationship between posterior tibial slope and anterior cruciate ligament injuries. Am J Sports Med 38(1):63–67

    Article  PubMed  Google Scholar 

  100. Torzilli PA, Deng X, Warren RF (1994) The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee. Am J Sports Med 22(1):105–112

    Article  PubMed  CAS  Google Scholar 

  101. Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31(6):831–842

    PubMed  Google Scholar 

  102. Utzschneider S, Goettinger M, Weber P, Horng A, Glaser C, Jansson V, Muller PE (2011) Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc 19(10):1643–1648

    Article  PubMed  CAS  Google Scholar 

  103. Voos JE, Suero EM, Citak M, Petrigliano FP, Bosscher MR, Wickiewicz TL, Pearle AD (2011) Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc. doi:101007/s00167-011-1823-3

    PubMed  Google Scholar 

  104. Vyas S, van Eck CF, Vyas N, Fu FH, Otsuka NY (2011) Increased medial tibial slope in teenage pediatric population with open physes and anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 19(3):372–377

    Article  PubMed  Google Scholar 

  105. Wall SJ, Rose DM, Sutter EG, Belkoff SM, Boden BP (2011) The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury: a cadaveric study. Am J Sports Med. doi:101177/0363546511430204

    Google Scholar 

  106. Walla DJ, Albright JP, McAuley E, Martin RK, Eldridge V, El-Khoury G (1985) Hamstring control and the unstable anterior cruciate ligament-deficient knee. Am J Sports Med 13(1):34–39

    Article  PubMed  CAS  Google Scholar 

  107. Yoo JH, Chang CB, Shin KS, Seong SC, Kim TK (2008) Anatomical references to assess the posterior tibial slope in total knee arthroplasty: a comparison of 5 anatomical axes. J Arthroplast 23(4):586–592

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hinterwimmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feucht, M.J., Mauro, C.S., Brucker, P.U. et al. The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21, 134–145 (2013). https://doi.org/10.1007/s00167-012-1941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-1941-6

Keywords

Navigation