Skip to main content
Log in

Fibrin glue does not improve the fixation of press-fitted cell-free collagen gel plugs in an ex vivo cartilage repair model

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Adequate graft fixation over a certain time period is necessary for successful cartilage repair and permanent integration of the graft into the surrounding tissue. The aim of the present study was to test the primary stability of a new cell-free collagen gel plug (CaReS®-1S) with two different graft fixation techniques over a simulated early postoperative period.

Methods

Isolated chondral lesions (11 mm diameter by 6 mm deep) down to the subchondral bone plate were created on the medial femoral condyle in 40 porcine knee specimens. The collagen scaffolds were fixed in 20 knees each by press-fit only or by press-fit + fibrin glue. Each knee was then put through 2,000 cycles in an ex vivo continuous passive motion model. Before and after the 2,000 motions, standardized digital pictures of the grafts were taken. The area of worn surface as a percentage of the total collagen plug surface was evaluated using image analysis software.

Results

No total delamination of the scaffolds to leave an empty defect site was recorded in any of the knees. The two fixation techniques showed no significant difference in worn surface area after 2,000 cycles (P = n.s.).

Conclusions

This study reveals that both the press-fit only and the press-fit + fibrin glue technique provide similar, adequate, stability of a type I collagen plug in the described porcine model. In the clinical setting, this fact may be particularly important for implantation of arthroscopic grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahern BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 17:705–713

    Article  PubMed  CAS  Google Scholar 

  2. Andereya S, Maus U, Gavenis K, Muller-Rath R, Miltner O, Mumme T, Schneider U (2006) First clinical experiences with a novel 3D-collagen gel (CaReS) for the treatment of focal cartilage defects in the knee. Z Orthop Ihre Grenzgeb 144:272–280

    Article  PubMed  CAS  Google Scholar 

  3. Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC (1991) Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res 9:330–340

    Article  PubMed  CAS  Google Scholar 

  4. Bae DK, Yoon KH, Song SJ (2006) Cartilage healing after microfracture in osteoarthritic knees. Arthroscopy 22:367–374

    Article  PubMed  Google Scholar 

  5. Bedi A, Feeley BT, Williams RJ 3rd (2010) Management of articular cartilage defects of the knee. J Bone Joint Surg Am 92:994–1009

    Article  PubMed  Google Scholar 

  6. Cherubino P, Grassi FA, Bulgheroni P, Ronga M (2003) Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report. J Orthop Surg (Hong Kong) 11:10–15

    CAS  Google Scholar 

  7. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31, 516 knee arthroscopies. Arthroscopy 13:456–460

    Article  PubMed  CAS  Google Scholar 

  8. Drobnic M, Radosavljevic D, Ravnik D, Pavlovcic V, Hribernik M (2006) Comparison of four techniques for the fixation of a collagen scaffold in the human cadaveric knee. Osteoarthritis Cartilage 14:337–344

    Article  PubMed  CAS  Google Scholar 

  9. Efe T, Schofer MD, Fuglein A, Timmesfeld N, Fuchs-Winkelmann S, El-Zayat BF, Stein T, Paletta JR, Heyse TJ (2010) An ex vivo continuous passive motion model in a porcine knee for assessing primary stability of cell-free collagen gel plugs. BMC Musculoskelet Disord 11:283–288

    Article  PubMed  Google Scholar 

  10. Erggelet C, Neumann K, Endres M, Haberstroh K, Sittinger M, Kaps C (2007) Regeneration of ovine articular cartilage defects by cell-free polymer-based implants. Biomaterials 28:5570–5580

    Article  PubMed  CAS  Google Scholar 

  11. Frisbie DD, Cross MW, McIlwraith CW (2006) A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol 19:142–146

    PubMed  CAS  Google Scholar 

  12. Gavenis K, Schmidt-Rohlfing B, Andereya S, Mumme T, Schneider U, Mueller-Rath R (2010) A cell-free collagen type I device for the treatment of focal cartilage defects. Artif Organs 34:79–83

    Article  PubMed  CAS  Google Scholar 

  13. Getgood A, Brooks R, Fortier L, Rushton N (2009) Articular cartilage tissue engineering: today’s research, tomorrow’s practice? J Bone Joint Surg Br 91:565–576

    Article  PubMed  CAS  Google Scholar 

  14. Greco F, de Palma L, Specchia N, Lisai P (1988) Experimental investigation into reparative osteogenesis with fibrin adhesive. Arch Orthop Trauma Surg 107:99–104

    Article  PubMed  CAS  Google Scholar 

  15. Homminga GN, Bulstra SK, Bouwmeester PS, van der Linden AJ (1990) Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg Br 72:1003–1007

    PubMed  CAS  Google Scholar 

  16. Isogai N, Landis WJ, Mori R, Gotoh Y, Gerstenfeld LC, Upton J, Vacanti JP (2000) Experimental use of fibrin glue to induce site-directed osteogenesis from cultured periosteal cells. Plast Reconstr Surg 105:953–963

    Article  PubMed  CAS  Google Scholar 

  17. Itay S, Abramovici A, Nevo Z (1987) Use of cultured embryonal chick epiphyseal chondrocytes as grafts for defects in chick articular cartilage. Clin Orthop Relat Res 220:284–303

    PubMed  Google Scholar 

  18. Iwasa J, Engebretsen L, Shima Y, Ochi M (2009) Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 17:561–577

    Article  PubMed  Google Scholar 

  19. Kaplonyi G, Zimmerman I, Frenyo AD, Farkas T, Nemes G (1988) The use of fibrin adhesive in the repair of chondral and osteochondral injuries. Injury 19:267–272

    Article  PubMed  CAS  Google Scholar 

  20. Kirilak Y, Pavlos NJ, Willers CR, Han R, Feng H, Xu J, Asokananthan N, Stewart GA, Henry P, Wood D, Zheng MH (2006) Fibrin sealant promotes migration and proliferation of human articular chondrocytes: possible involvement of thrombin and protease-activated receptors. Int J Mol Med 17:551–558

    PubMed  CAS  Google Scholar 

  21. Knecht S, Erggelet C, Endres M, Sittinger M, Kaps C, Stussi E (2007) Mechanical testing of fixation techniques for scaffold-based tissue-engineered grafts. J Biomed Mater Res B Appl Biomater 83:50–57

    PubMed  Google Scholar 

  22. Lane JG, Massie JB, Ball ST, Amiel ME, Chen AC, Bae WC, Sah RL, Amiel D (2004) Follow-up of osteochondral plug transfers in a goat model: a 6-month study. Am J Sports Med 32:1440–1450

    Article  PubMed  Google Scholar 

  23. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64:460–466

    PubMed  CAS  Google Scholar 

  24. Marlovits S, Striessnig G, Kutscha-Lissberg F, Resinger C, Aldrian SM, Vecsei V, Trattnig S (2005) Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle. Knee Surg Sports Traumatol Arthrosc 13:451–457

    Article  PubMed  Google Scholar 

  25. Nakamura K, Koshino T, Saito T (1998) Osteogenic response of the rabbit femur to a hydroxyapatite thermal decomposition product-fibrin glue mixture. Biomaterials 19:1901–1907

    Article  PubMed  CAS  Google Scholar 

  26. Nehrer S, Domayer S, Dorotka R, Schatz K, Bindreiter U, Kotz R (2006) Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur J Radiol 57:3–8

    Article  PubMed  CAS  Google Scholar 

  27. Ono K, Shikata J, Shimizu K, Yamamuro T (1992) Bone-fibrin mixture in spinal surgery. Clin Orthop Relat Res 275:133–139

    PubMed  Google Scholar 

  28. Pavesio A, Abatangelo G, Borrione A, Brocchetta D, Hollander AP, Kon E, Torasso F, Zanasi S, Marcacci M (2003) Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found Symp 249:203–217

    Article  PubMed  Google Scholar 

  29. Raimondi MT, Pietrabissa R (2005) Contact pressures at grafted cartilage lesions in the knee. Knee Surg Sports Traumatol Arthrosc 13:444–450

    Article  PubMed  Google Scholar 

  30. Schneider U, Andereya S (2003) First results of a prospective randomized clinical trial on traditional chondrocyte transplantation vs CaReS-Technology. Z Orthop Ihre Grenzgeb 141:496–497

    PubMed  CAS  Google Scholar 

  31. Schwarz N, Redl H, Zeng L, Schlag G, Dinges HP, Eschberger J (1993) Early osteoinduction in rats is not altered by fibrin sealant. Clin Orthop Relat Res 293:353–359

    PubMed  Google Scholar 

  32. Scotti C, Pozzi A, Mangiavini L, Vitari F, Boschetti F, Domeneghini C, Fraschini G, Peretti GM (2009) Healing of meniscal tissue by cellular fibrin glue: an in vivo study. Knee Surg Sports Traumatol Arthrosc 17:645–651

    Article  PubMed  CAS  Google Scholar 

  33. Silverman RP, Bonasser L, Passaretti D, Randolph MA, Yaremchuk MJ (2000) Adhesion of tissue-engineered cartilate to native cartilage. Plast Reconstr Surg 105:1393–1398

    Article  PubMed  CAS  Google Scholar 

  34. Sittinger M, Hutmacher DW, Risbud MV (2004) Current strategies for cell delivery in cartilage and bone regeneration. Curr Opin Biotechnol 15:411–418

    Article  PubMed  CAS  Google Scholar 

  35. Sittinger M, Perka C, Schultz O, Haupl T, Burmester GR (1999) Joint cartilage regeneration by tissue engineering. Z Rheumatol 58:130–135

    Article  PubMed  CAS  Google Scholar 

  36. Smith GD, Knutsen G, Richardson JB (2005) A clinical review of cartilage repair techniques. J Bone Joint Surg Br 87:445–449

    Article  PubMed  CAS  Google Scholar 

  37. Visna P, Pasa L, Adler J, Folvarsky J, Horky D (2003) Treatment of deep chondral defects of the knee using autologous chondrocytes cultured on a support–preparation of the cartilage graft. Acta Chir Orthop Traumatol Cech 70:350–355

    PubMed  CAS  Google Scholar 

  38. Zilch H, Wolff R (1987) Fibrin glue and bone regeneration. Z Orthop Ihre Grenzgeb 125:214–218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Karsten Gavenis, Department of Orthopaedic Surgery, University Hospital Aachen, Germany, and Professor Ulrich Schneider, Arthro Nova Clinic, Tegernsee, Germany, for providing the laboratory facilities, as well as Dr. Johanna Schmitt, Marburg, Germany, for editing the manuscript and for help with the English language.

Conflict of interest

TE, MDS, and TJH are consultants to Smith & Nephew, Arthroscopy, Germany. There is no financial interest related to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Efe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efe, T., Füglein, A., Heyse, T.J. et al. Fibrin glue does not improve the fixation of press-fitted cell-free collagen gel plugs in an ex vivo cartilage repair model. Knee Surg Sports Traumatol Arthrosc 20, 210–215 (2012). https://doi.org/10.1007/s00167-011-1571-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1571-4

Keywords

Navigation