Skip to main content
Log in

The influence of posterior-inferior tibial slope in ACL injury

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To explore the effect of different posterior-inferior tibial slope (PITS) angles on ACL injury at non-contact sports, knee laxity and the need for ACL reconstruction.

Methods

One hundred patients with an acute, arthroscopically verified total ACL rupture were followed prospectively with the intention of treating the injury without reconstruction. Knee laxity was assessed with the Lachman and pivot shift tests with the patients under general anesthesia within 10 days of injury. After 15 years, 22 patients of 94 available for follow-up had undergone reconstruction a mean of 4 years after injury. Reconstruction was performed in case of repeated giving-way episodes (n = 16) or meniscus lesions suitable for fixation (n = 6). Knee radiographs were available from 82 patients. Two independent readers determined the PITS angle.

Results

Patients injured in contact sports had a greater mean PITS angle than those injured in non-contact sports (10.5° and 9.3°, respectively, P = 0.03). The mean PITS angle was 10.1 (SD = 2.3) for non-reconstructed knees and 9.1 (SD = 3.0) for reconstructed knees (P = NS). Eight of 17 reconstructed knees showed a PITS angle of less than 7.6° (P = 0.006), and the odds ratio of need for reconstruction was 3.9 (CI 1.26–12.3, P = 0.02). No significant difference in PITS angle was found between patients with low- and high-grade instability.

Conclusion

The main finding of the study was that reconstructed knees were overrepresented in knees with extremely low PITS angles. Additionally, patients injured in contact sports had higher PITS angles than those injured in non-contact sports, and PITS angle did not influence knee laxity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ageberg E, Zätterstrom R, Moritz U et al (2001) Influence of supervised and nonsupervised training on postural control after an acute anterior cruciate ligament rupture: a three-year longitudinal prospective study. J Orthop Sports Phys Ther 31:632–644

    PubMed  CAS  Google Scholar 

  2. Ageberg E (2002) Consequences of a ligament injury on neuromuscular function and relevance to rehabilitation—using the anterior cruciate ligament-injured knee as model. J Electromyogr Kinesiol 12:205–212

    Article  PubMed  Google Scholar 

  3. Boerboom AL, Hof AL, Halbertsma JP et al (2001) Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc 9:211–216

    Article  PubMed  CAS  Google Scholar 

  4. Bowers AL, Spindler KP, McCarty EC et al (2005) Height, weight, and bmi predict intra-articular injuries observed during acl reconstruction: evaluation of 456 cases from a prospective acl database. Clin J Sport Med 15:9–13

    Article  PubMed  Google Scholar 

  5. Brandon ML, Haynes PT, Bonamo JR et al (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894–899

    Article  PubMed  Google Scholar 

  6. Chmielewski TL, Hurd WJ, Snyder-Mackler L (2005) Elucidation of a potentially destabilizing control strategy in acl deficient non-copers. J Electromyogr Kinesiol 15:83–92

    Article  PubMed  CAS  Google Scholar 

  7. Dahlberg L, Friden T, Roos H et al (1994) A longitudinal study of cartilage matrix metabolism in patients with cruciate ligament rupture–synovial fluid concentrations of aggrecan fragments, stromelysin-1 and tissue inhibitor of metalloproteinase-1. Br J Rheumatol 33:1107–1111

    Article  PubMed  CAS  Google Scholar 

  8. Dargel J, Feiser J, Gotter M et al (2009) Side differences in the anatomy of human knee joints. Knee Surg Sports Traumatol Arthrosc 17:1368–1376

    Article  PubMed  Google Scholar 

  9. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76:745–749

    PubMed  CAS  Google Scholar 

  10. Eastlack ME, Axe MJ, Snyder-Mackler L (1999) Laxity, instability, and functional outcome after acl injury: copers versus noncopers. Med Sci Sports Exerc 31:210–215

    Article  PubMed  CAS  Google Scholar 

  11. Fening SD, Kovacic J, Kambic H et al (2008) The effects of modified posterior tibial slope on anterior cruciate ligament strain and knee kinematics: a human cadaveric study. J Knee Surg 21:205–211

    PubMed  Google Scholar 

  12. Fithian DC, Paxton EW, Stone ML et al (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 33:335–346

    Article  PubMed  Google Scholar 

  13. Fridén T, Jonsson A, Erlandsson T et al (1993) Effect of femoral condyle configuration on disability after an anterior cruciate ligament rupture. 100 patients followed for 5 years. Acta Orthop Scand 64:571–574

    Article  PubMed  Google Scholar 

  14. Fridén T, Erlandsson T, Zätterstrom R et al (1995) Compression or distraction of the anterior cruciate injured knee. Variations in injury pattern in contact sports and downhill skiing. Knee Surg Sports Traumatol Arthrosc 3:144–147

    Article  PubMed  Google Scholar 

  15. Giffin JR, Vogrin TM, Zantop T et al (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382

    Article  PubMed  Google Scholar 

  16. Hashemi J, Chandrashekar N, Mansouri H et al (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38:54–62

    Article  PubMed  Google Scholar 

  17. Herrington L, Fowler E (2006) A systematic literature review to investigate if we identify those patients who can cope with anterior cruciate ligament deficiency. Knee 13:260–265

    Article  PubMed  Google Scholar 

  18. Hiraoka H, Yashiki M, Sakai H (2008) Contributory factors to the results of gravity-assisted pivot-shift test for anterior cruciate ligament injury: the significance of muscle torque around the knee. Knee Surg Sports Traumatol Arthrosc 16:279–285

    Article  PubMed  Google Scholar 

  19. Kostogiannis I, Ageberg E, Neuman P et al (2007) Activity level and subjective knee function 15 years after anterior cruciate ligament injury: a prospective, longitudinal study of nonreconstructed patients. Am J Sports Med 35:1135–1143

    Article  PubMed  Google Scholar 

  20. Kostogiannis I, Ageberg E, Neuman P et al (2008) Clinically assessed knee joint laxity as a predictor for reconstruction after an anterior cruciate ligament injury: a prospective study of 100 patients treated with activity modification and rehabilitation. Am J Sports Med 36:1528–1533

    Article  PubMed  Google Scholar 

  21. Kvist J (2004) Sagittal plane translation during level walking in poor-functioning and well-functioning patients with anterior cruciate ligament deficiency. Am J Sports Med 32:1250–1255

    Article  PubMed  Google Scholar 

  22. Kvist J (2005) Sagittal tibial translation during exercises in the anterior cruciate ligament-deficient knee. Scand J Med Sci Sports 15:148–158

    Article  PubMed  Google Scholar 

  23. Liu W, Maitland ME (2003) Influence of anthropometric and mechanical variations on functional instability in the acl-deficient knee. Ann Biomed Eng 31:1153–1161

    Article  PubMed  Google Scholar 

  24. Lysholm M, Ledin T, Odkvist LM et al (1998) Postural control—a comparison between patients with chronic anterior cruciate ligament insufficiency and healthy individuals. Scand J Med Sci Sports 8:432–438

    Article  PubMed  CAS  Google Scholar 

  25. Meister K, Talley MC, Horodyski MB et al (1998) Caudal slope of the tibia and its relationship to noncontact injuries to the ACL. Am J Knee Surg 11:217–219

    PubMed  CAS  Google Scholar 

  26. Myklebust G, Bahr R (2005) Return to play guidelines after anterior cruciate ligament surgery. Br J Sports Med 39:127–131

    Article  PubMed  CAS  Google Scholar 

  27. Neuman P, Englund M, Kostogiannis I et al (2008) Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am J Sports Med 36:1717–1725

    Article  PubMed  Google Scholar 

  28. Neuman P, Kostogiannis I, Friden T et al (2009) Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury—a prospective cohort study. Osteoarthritis Cartilage 17:284–290

    Article  PubMed  CAS  Google Scholar 

  29. Noyes FR, Grood ES (1988) Diagnosis of knee ligament injuries: clinical concepts. In: JA F (ed) The crucial ligaments. Diagnosis and treatment of ligamentous injuries about the knee. Churchill Livingstone, New York, pp 261–285

    Google Scholar 

  30. Rudolph KS, Axe MJ, Snyder-Mackler L (2000) Dynamic stability after acl injury: who can hop? Knee Surg Sports Traumatol Arthrosc 8:262–269

    Article  PubMed  CAS  Google Scholar 

  31. Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the acl lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 16:112–117

    Article  PubMed  Google Scholar 

  32. Todd MS, Lalliss S, Garcia E et al (2010) The relationship between posterior tibial slope and anterior cruciate ligament injuries. Am J Sports Med 38:63–67

    Article  PubMed  Google Scholar 

  33. Walla DJ, Albright JP, McAuley E et al (1985) Hamstring control and the unstable anterior cruciate ligament-deficient knee. Am J Sports Med 13:34–39

    Article  PubMed  CAS  Google Scholar 

  34. Zätterstrom R, Fridén T, Lindstrand A et al (1998) Early rehabilitation of acute anterior cruciate ligament injury—a randomized clinical trial. Scand J Med Sci Sports 8:154–159

    Article  PubMed  Google Scholar 

  35. Zätterstrom R, Fridén T, Lindstrand A et al (2000) Rehabilitation following acute anterior cruciate ligament injuries—a 12-month follow-up of a randomized clinical trial. Scand J Med Sci Sports 10:156–163

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was partially supported by funds from the Swedish National Centre for Research in Sports (CIF). Special thanks to Jonas Ranstam, PhD, from the Swedish National Competence Centre for Musculoskeletal Disorders, for statistical advice, as well as to Annette W-Dahl for helping with the collection of patients.

Conflict of interest

The authors declare that they have no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Kostogiannis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostogiannis, I., Swärd, P., Neuman, P. et al. The influence of posterior-inferior tibial slope in ACL injury. Knee Surg Sports Traumatol Arthrosc 19, 592–597 (2011). https://doi.org/10.1007/s00167-010-1295-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1295-x

Keywords

Navigation