Skip to main content
Log in

Contribution of the meniscofemoral ligament as a restraint to the posterior tibial translation in a porcine knee

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The meniscofemoral ligament (MFL) is a major structure in the posterior aspect of the porcine knee together with the posterior cruciate ligament (PCL). While the porcine knee is a frequently used animal model for biomechanical evaluation of PCL reconstruction techniques, the contribution of the MFL to stability of the porcine knee is not well understood. The purpose of this study is (1) to evaluate the kinematics of the knee after sequential cutting of the PCL and MFL and (2) to determine the in situ forces of the PCL and MFL in response to a posterior tibial load of 89 N using the robotic/universal force-moment sensor system from 15° to 90° of knee flexion. Ten porcine knees were used in this study. The magnitude of posterior tibial translation under a posterior tibial load was significantly increased (P < 0.01) after sequential transection of the PCL and the MFL at each testing angle compared to the intact condition. The in situ force of the PCL was highest at 60° of flexion (82.3 ± 8.6 N) and lowest at 15° of flexion (45.1 ± 15.9 N). The in situ force of the MFL was highest at 15° of flexion (24.3 ± 6.5 N) and lowest at 90° of flexion (12.9 ± 10.5 N). The findings in this study revealed a biomechanical contribution of the MFL as the secondary restraint to the posterior tibial translation in conjunction with the PCL especially near full extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amis AA, Gupte CM, Bull AM, Edwards A (2006) Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc 14:257–263

    Article  CAS  PubMed  Google Scholar 

  2. Chen CH, Chou SW, Chen WJ, Shih CH (2004) Fixation strength of three different graft types used in posterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:371–375

    PubMed  Google Scholar 

  3. Clancy WG Jr, Shelbourne KD, Zoellner GB, Keene JS, Reider B, Rosenberg TD (1983) Treatment of knee joint instability secondary to rupture of the posterior cruciate ligament. Report of a new procedure. J Bone Joint Surg Am 65:310–322

    PubMed  Google Scholar 

  4. Coulier B (2009) Signification of the unusual delineation of the anterior meniscofemoral ligament of Humphrey during knee arthro-CT. Surg Radiol Anat 31:121–128

    Article  PubMed  Google Scholar 

  5. Fithian DC, Goltz DH, Funahashi TT (2003) Diagnosis of ligament injury Part C Instrumented laxity studies. In: Pedowitz RA, O’Corner JJ, Akeson WH (eds) Daniel’s knee injuries: ligament and cartilage structure, function, injury, and repair, 2nd edn. Lippincott Williams and Wilkins, Philadelphia, pp 370–408

    Google Scholar 

  6. Gupte CM, Bull AM, Murray R, Amis AA (2007) Comparative anatomy of the meniscofemoral ligament in humans and some domestic mammals. Anat Histol Embryol 36:47–52

    Article  CAS  PubMed  Google Scholar 

  7. Gupte CM, Bull AM, Thomas RD, Amis AA (2003) The meniscofemoral ligaments: secondary restraints to the posterior drawer. Analysis of anteroposterior and rotary laxity in the intact and posterior-cruciate-deficient knee. J Bone Joint Surg Br 85:765–773

    PubMed  Google Scholar 

  8. Gupte CM, Bull AM, Thomas RD, Amis AA (2003) A review of the function and biomechanics of the meniscofemoral ligaments. Arthroscopy 19:161–171

    Article  PubMed  Google Scholar 

  9. Harner CD, Janaushek MA, Kanamori A, Yagi M, Vogrin TM, Woo SL (2000) Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med 28:144–151

    CAS  PubMed  Google Scholar 

  10. Kitamura N, Yasuda K, Tohyama H, Yamanaka M, Tanabe Y (2005) Primary stability of three posterior cruciate ligament reconstruction procedures: a biomechanical in vitro study. Arthroscopy 21:970–978

    Article  PubMed  Google Scholar 

  11. Lee BY, Jee WH, Kim JM, Kim BS, Choi KH (2000) Incidence and significance of demonstrating the meniscofemoral ligament on MRI. Br J Radiol 73:271–274

    CAS  PubMed  Google Scholar 

  12. Lenschow S, Zantop T, Weimann A et al (2006) Joint kinematics and in situ forces after single bundle PCL reconstruction: a graft placed at the center of the femoral attachment does not restore normal posterior laxity. Arch Orthop Trauma Surg 126:253–259

    Article  PubMed  Google Scholar 

  13. Ma CB, Kanamori A, Vogrin TM, Woo SL, Harner CD (2003) Measurement of posterior tibial translation in the posterior cruciate ligament-reconstructed knee: significance of the shift in the reference position. Am J Sports Med 31:843–848

    PubMed  Google Scholar 

  14. Margheritini F, Rihn JA, Mauro CS, Stabile KJ, Woo SL, Harner CD (2005) Biomechanics of initial tibial fixation in posterior cruciate ligament reconstruction. Arthroscopy 21:1164–1171

    Article  PubMed  Google Scholar 

  15. Park SE, Stamos BD, DeFrate LE, Gill TJ, Li G (2004) The effect of posterior knee capsulotomy on posterior tibial translation during posterior cruciate ligament tibial inlay reconstruction. Am J Sports Med 32:1514–1519

    Article  PubMed  Google Scholar 

  16. Rudy TW, Livesay GA, Woo SL, Fu FH (1996) A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 29:1357–1360

    Article  CAS  PubMed  Google Scholar 

  17. Stone JD, Carlin GJ, Ishibashi Y, Harner CD, Woo SL (1996) Assessment of posterior cruciate ligament graft performance using robotic technology. Am J Sports Med 24:824–828

    Article  CAS  PubMed  Google Scholar 

  18. Woo SL, Fisher MB (2009) Evaluation of knee stability with use of a robotic system. J Bone Joint Surg Am 91(Suppl 1):78–84

    Article  PubMed  Google Scholar 

  19. Zantop T, Lenschow S, Lemburg T, Weimann A, Petersen W (2004) Soft-tissue graft fixation in posterior cruciate ligament reconstruction: evaluation of the effect of tibial insertion site on joint kinematics and in situ forces using a robotic/UFS testing system. Arch Orthop Trauma Surg 124:614–620

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The support of the Albert B. Ferguson, Jr. MD Orthopaedic Fund of the Pittsburgh Foundation is gratefully acknowledged.

Conflict of interest

Freddie H. Fu receives a research/educational grant from Smith & Nephew.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie H. Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lertwanich, P., Martins, C.A.Q., Kato, Y. et al. Contribution of the meniscofemoral ligament as a restraint to the posterior tibial translation in a porcine knee. Knee Surg Sports Traumatol Arthrosc 18, 1277–1281 (2010). https://doi.org/10.1007/s00167-010-1134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1134-0

Keywords

Navigation