Skip to main content
Log in

Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

We have attempted to quantify the influence of clinical, radiological and prosthetic design factors upon flexion following knee replacement. Our study examined the outcome following 101 knee replacements performed in two prospective randomized trials using similar cruciate retaining implants. Multivariate analyses, after adjusting for age, sex, diagnosis and the type of prosthesis revealed that the only significant correlates for range of movement at 12 months were the difference in posterior condylar offset ratio (p < 0.001), tibial slope (p < 0.001) and preoperative range of movement (p = 0.025). We found a moderate correlation between 12-month range of movement and posterior tibial slope (R = 0.58) and the difference of post femoral condylar offset (i.e, post-operative minus preoperative posterior condylar offset, R = 0.65). Posterior condylar offset had the greatest impact upon final range of movement highlighting this as an important consideration for the operating surgeon at pre-operative templating when choosing both the design and size of the femoral component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aigner C, Windhager R, Pechmann M, Rehak P, Engeleke K (2004) The influence of an anterior–posterior gliding mobile bearing on range of motion after total knee arthroplasty. A prospective, randomized, double-blinded study. J Bone Jt Surg Am 86-A:2257–2262

    Google Scholar 

  2. Anouchi YS, McShane M, Kelly F Jr, Elting J, Stiehl J (1996) Range of motion in total knee replacement. Clin Orthop Relat Res 331:87–92

    Article  PubMed  Google Scholar 

  3. Argenson JN, Komistek RD, Mahfouz M, Walker SA, Aubaniac JM, Dennis DA (2004) A high flexion total knee arthroplasty design replicates healthy knee motion. Clin Orthop Relat Res 428:174–179

    Article  PubMed  Google Scholar 

  4. Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Jt Surg Br 84:50–53

    Article  CAS  Google Scholar 

  5. Bellemans J, Robijns F, Duerinckx J, Banks S, Vandenneucker H (2005) The influence of tibial slope on maximal flexion after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 13:193–196

    Article  PubMed  CAS  Google Scholar 

  6. Bengs BC, Scott RD (2006) The effect of patellar thickness on intraoperative knee flexion and patellar tracking in total knee arthroplasty. J Arthroplast 21:650–655

    Article  Google Scholar 

  7. Bhan S, Malhotra R, Kiran EK, Shukla S, Bijjawara M (2005) A comparison of fixed-bearing and mobile-bearing total knee arthroplasty at a minimum follow-up of 4.5 years. J Bone Jt Surg Am 87:2290–2296

    Article  CAS  Google Scholar 

  8. Bin SI, Nam TS (2007) Early results of high-flex total knee arthroplasty: comparison study at 1 year after surgery. Knee Surg Sports Traumatol Arthrosc 15:350–355

    Article  PubMed  Google Scholar 

  9. Catani F, Fantozzi S, Ensini A, Leardini A, Moschella D, Giannini S (2006) Influence of tibial component posterior slope on in vivo knee kinematics in fixed-bearing total knee arthroplasty. J Orthop Res 24:581–587

    Article  PubMed  CAS  Google Scholar 

  10. Coughlin KM, Incavo SJ, Doohen RR, Gamada K, Banks S, Beynnon BD (2007) Kneeling kinematics after total knee arthroplasty: anterior–posterior contact position of a standard and a high-flex tibial insert design. J Arthroplast 22:160–165

    Article  Google Scholar 

  11. Dennis DA, Komistek RD, Stiehl JB, Walker SA, Dennis KN (1998) Range of motion after total knee arthroplasty: the effect of implant design and weight-bearing conditions. J Arthroplast 13:748–752

    Article  CAS  Google Scholar 

  12. Hofmann AA, Kurtin SM, Lyons S, Tanner AM, Bolognesi MP (2006) Clinical and radiographic analysis of accurate restoration of the joint line in revision total knee arthroplasty. J Arthroplast 21:1154–1162

    Article  Google Scholar 

  13. Huang HT, Su JY, Wang GJ (2005) The early results of high-flex total knee arthroplasty: a minimum of 2 years of follow-up. J Arthroplast 20:674–679

    Article  Google Scholar 

  14. Incavo SJ, Beynnon BD, Johnson CC, Churchill DL (1997) Knee kinematics in genesis total knee arthroplasty. A comparison of different tibial designs with and without posterior cruciate substitution in cadaveric specimens. Am J Knee Surg 10:209–215

    PubMed  CAS  Google Scholar 

  15. Jacobs WC, Clement DJ, Wymenga AB (2005) Retention versus sacrifice of the posterior cruciate ligament in total knee replacement for treatment of osteoarthritis and rheumatoid arthritis. Cochrane Database Syst Rev 4:CD004803

  16. Jones RE (2006) High-flexion rotating-platform knees: rationale, design, and patient selection. Orthopedics 29:S76–S79

    PubMed  Google Scholar 

  17. Kansara D, Markel DC (2006) The effect of posterior tibial slope on range of motion after total knee arthroplasty. J Arthroplast 21:809–813

    Article  Google Scholar 

  18. Kelly MA (2006) High-flexion knee designs: more hype than hope? In opposition. J Arthroplast 21:42–43

    Article  Google Scholar 

  19. Kim J, Nelson CL, Lotke PA (2004) Stiffness after total knee arthroplasty. Prevalence of the complication and outcomes of revision. J Bone Jt Surg Am 86-A:1479–1484

    Google Scholar 

  20. Kim YH, Sohn KS, Kim JS (2005) Range of motion of standard and high-flexion posterior stabilized total knee prostheses. A prospective, randomized study. J Bone Jt Surg Am 87:1470–1475

    Article  Google Scholar 

  21. Li G, Most E, Sultan PG, Schule S, Zayontz S, Park SE et al (2004) Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: an in vitro robotic experimental investigation. J Bone Jt Surg Am 86-A:1721–1729

    Google Scholar 

  22. Maeno S, Kondo M, Niki Y, Matsumoto H (2006) Patellar impingement against the tibial component after total knee arthroplasty. Clin Orthop Relat Res 452:265–269

    Article  PubMed  Google Scholar 

  23. Maruyama S, Yoshiya S, Matsui N, Kuroda R, Kurosaka M (2004) Functional comparison of posterior cruciate-retaining versus posterior stabilized total knee arthroplasty. J Arthroplast 19:349–353

    Article  Google Scholar 

  24. Massin P, Gournay A (2006) Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplast 21:889–896

    Article  Google Scholar 

  25. Mihalko W, Fishkin Z, Krackow K (2006) Patellofemoral overstuff and its relationship to flexion after total knee arthroplasty. Clin Orthop Relat Res 449:283–287

    Article  PubMed  Google Scholar 

  26. Miner AL, Lingard EA, Wright EA, Sledge CB, Katz JN (2003) Knee range of motion after total knee arthroplasty: how important is this as an outcome measure? J Arthroplast 18:286–294

    Article  Google Scholar 

  27. Muller SD, Deehan DJ, Holland JP, Outterside SE, Kirk LM, Gregg PJ, McCaskie AW (2006) Should we reconsider all-polyethylene tibial implants in total knee replacement? J Bone Jt Surg Br 88:1596–1602

    CAS  Google Scholar 

  28. Myles CM, Rowe PJ, Walker CR, Nutton RW (2002) Knee joint functional range of movement prior to and following total knee arthroplasty measured using flexible electrogoniometry. Gait Posture 16:46–54

    Article  PubMed  Google Scholar 

  29. Myles CM, Rowe PJ, Nutton RW, Burnett R (2006) The effect of patella resurfacing in total knee arthroplasty on functional range of movement measured by flexible electrogoniometry. Clin Biomech (Bristol, Avon) 21:733–739

    Article  Google Scholar 

  30. Parsley BS, Engh GA, Dwyer KA (1992) Preoperative flexion. Does it influence postoperative flexion after posterior-cruciate-retaining total knee arthroplasty? Clin Orthop Relat Res 275:204–210

    PubMed  Google Scholar 

  31. Parsley BS, Conditt MA, Bertolusso R, Noble PC (2006) Posterior cruciate ligament substitution is not essential for excellent postoperative outcomes in total knee arthroplasty. J Arthroplast 21:127–131

    Article  Google Scholar 

  32. Ritter MA (2006) High-flexion knee designs: more hype than hope? In the affirmative. J Arthroplast 21:40–41

    Article  Google Scholar 

  33. Schurman DJ, Rojer DE (2005) Total knee arthroplasty: range of motion across five systems. Clin Orthop Relat Res 430:132–137

    Article  PubMed  Google Scholar 

  34. Seon JK, Song EK, Lee JY (2005) Comparison of range of motion of high-flexion prosthesis and mobile-bearing prosthesis in total knee arthroplasty. Orthopedics 28:s1247–s1250

    PubMed  Google Scholar 

  35. Shi MG, Lu HS, Guan ZP (2006) Influence of preoperative range of motion on the early clinical outcome of total knee arthroplasty. Zhonghua Wai Ke Za Zhi 44:1101–1105

    PubMed  Google Scholar 

  36. Stiehl JB, Komistek RD, Dennis DA, Paxson RD, Hoff WA (1995) Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty. J Bone Jt Surg Br 77:884–889

    CAS  Google Scholar 

  37. Straw R, Kulkarni S, Attfield S, Wilton TJ (2003) Posterior cruciate ligament at total knee replacement. Essential, beneficial or a hindrance? J Bone Jt Surg Br 85:671–674

    CAS  Google Scholar 

  38. Takatsu T, Itokazu M, Shimizu K, Brown TD (1998) The function of posterior tilt of the tibial component following posterior cruciate ligament-retaining total knee arthroplasty. Bull Hosp Jt Dis 57:195–201

    PubMed  CAS  Google Scholar 

  39. Tew M, Forster IW, Wallace WA (1989) Effect of total knee arthroplasty on maximal flexion. Clin Orthop Relat Res 247:168–174

    PubMed  Google Scholar 

  40. Uvehammer J, Karrholm J, Brandsson S, Herberts P, Carlsson L, Karlsson J et al (2000) In vivo kinematics of total knee arthroplasty: flat compared with concave tibial joint surface. J Orthop Res 18:856–864

    Article  PubMed  CAS  Google Scholar 

  41. Uvehammer J (2001) Knee joint kinematics, fixation and function related to joint area design in total knee arthroplasty. Acta Orthop Scand Suppl 72:1–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the surgeons who contributed cases to these trials, Mr. Nigel Brewster, Mr. Jim Holland and Professor Andrew McCaskie and the research staff, Karen Bettinson, Lorna Kirk and Stephanie Outterside who collected all of the clinical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Malviya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malviya, A., Lingard, E.A., Weir, D.J. et al. Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope. Knee Surg Sports Traumatol Arthrosc 17, 491–498 (2009). https://doi.org/10.1007/s00167-008-0712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-008-0712-x

Keywords

Navigation