Skip to main content
Log in

Thermal effects after anterior cruciate ligament shrinkage using radiofrequency technology: a porcine cadaver study

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The effects of thermal energy on an anterior cruciate ligament (ACL) are unknown. This study was undertaken to know the immediate and direct effects of thermocoagulation on normal ACL. Thermocoagulation was generated by monopolar radiofrequency (RF) at 67°C and 40 W of energy and applied with use of a commercial jig in a porcine cadaveric model, and biomechanical and histological changes were evaluated immediately. Thermocoagulation caused significant shrinkage of ACL without immediate effects on ligament biomechanical properties, including stiffness and maximal failure force. However, histological analysis demonstrated a decrease in number of dense elongated cells and blood vessels within the epiligamentous tissue, loss of areolar spaces, decrement in the periodicity of collagen waveform, and shortening and pyknotic nuclear changes of cells within the fascicular region. RF-generated thermocoagulation resulted in ACL shortening with significant changes on histological findings but not on initial biomechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carter TR, Bailie DS, Edinger S (2002) Radiofrequency electrothermal shrinkage of the anterior cruciate ligament. Am J Sports Med 30:221–226

    PubMed  Google Scholar 

  2. Favorito PJ, Langenderfer MA, Colosimo AJ, Heidt RS Jr, Carlonas RL (2002) Arthroscopic laser-assisted capsular shift in the treatment of patients with multidirectional shoulder instability. Am J Sports Med 30:322–328

    PubMed  Google Scholar 

  3. Hayashi K, Massa KL, Thabit G III et al (1999) Histologic evaluation of the glenohumeral joint capsule after the laser-assisted capsular shift procedure for glenohumeral instability. Am J Sports Med 27:162–167

    CAS  PubMed  Google Scholar 

  4. Hayashi K, Peters DM, Thabit G III et al (2000) The mechanism of joint capsule thermal modification in an in-vitro sheep model. Clin Orthop 370:236–249

    Article  PubMed  Google Scholar 

  5. Hecht P, Hayashi K, Cooley AJ et al (1998) The thermal effect of monopolar radiofrequency energy on the properties of joint capsule. An in vivo histologic study using a sheep model. Am J Sports Med 26:808–814

    CAS  PubMed  Google Scholar 

  6. Hecht P, Hayashi K, Lu Y et al (1999) Monopolar radiofrequency energy effects on joint capsular tissue: potential treatment for joint instability. An in vivo mechanical, morphological, and biochemical study using an ovine model. Am J Sports Med 27:761–771

    CAS  PubMed  Google Scholar 

  7. Indelli PF, Dillingham MF, Fanton GS, Schurman DJ (2003) Monopolar thermal treatment of symptomatic anterior cruciate ligament instability. Clin Orthop 407:139–147

    PubMed  Google Scholar 

  8. Kwan MK, Lin TH, Woo SL (1993) On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament. J Biomech 26:447–452

    Article  CAS  PubMed  Google Scholar 

  9. Lephart SM, Myers JB, Bradley JP, Fu FH (2002) Shoulder proprioception and function following thermal capsulorraphy. Arthroscopy 18:770–778

    PubMed  Google Scholar 

  10. Levy O, Wilson M, Williams H et al (2001) Thermal capsular shrinkage for shoulder instability. Mid-term longitudinal outcome study. J Bone Joint Surg Br 83:640–645

    Article  CAS  PubMed  Google Scholar 

  11. Li G, Rudy TW, Allen C, Sakane M, Woo SL (1998) Effect of combined axial compressive and anterior tibial loads on in situ forces in the anterior cruciate ligament: a porcine study. J Orthop Res 16:122–127

    Article  CAS  PubMed  Google Scholar 

  12. Lopez MJ, Hayashi K, Vanderby R Jr et al (2000) Effects of monopolar radiofrequency energy on ovine joint capsular mechanical properties. Clin Orthop 374:286–297

    Article  PubMed  Google Scholar 

  13. Lopez MJ, DeTemple LA, Lu Y, Markel MD (2001) The effects of monopolar radiofrequency energy on intact and lacerated ovine menisci. Arthroscopy 17:613–619

    CAS  PubMed  Google Scholar 

  14. Lopez MJ, Markel MD (2003) Anterior cruciate ligament rupture after thermal treatment in a canine model. Am J Sports Med 31:164–167

    PubMed  Google Scholar 

  15. Lu Y, Hayashi K, Edwards RB III et al (2000) The effect of monopolar radiofrequency treatment pattern on joint capsular healing. In vitro and in vivo studies using an ovine model. Am J Sports Med 28:711–719

    CAS  PubMed  Google Scholar 

  16. Lu Y, Edwards RB III, Nho S et al (2002) Thermal chondroplasty with bipolar and monopolar radiofrequency energy: effect of treatment time on chondrocyte death and surface contouring. Arthroscopy 18:779–788

    PubMed  Google Scholar 

  17. Lyons TR, Griffith PL, Savoie FH III, Field LD (2001) Laser-assisted capsulorrhaphy for multidirectional instability of the shoulder. Arthroscopy 17:25–30

    CAS  PubMed  Google Scholar 

  18. Martelli S, Joukhadar A, Zaffagnini S et al (1998) Fiber-based anterior cruciate ligament model for biomechanical simulations. J Orthop Res 16:379–385

    CAS  PubMed  Google Scholar 

  19. Medvecky MJ, Ong BC, Rokito AS, Sherman OH (2001) Thermal capsular shrinkage: Basic science and clinical applications. Arthroscopy 17:624–635

    CAS  PubMed  Google Scholar 

  20. Murray MM, Martin SD, Martin TL, Spector M (2000) Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am 82-A:1387–1397

    CAS  PubMed  Google Scholar 

  21. Perry JJ, Higgins LD (2000) Anterior and posterior cruciate ligament rupture after thermal treatment. Arthroscopy 16:732–736

    CAS  PubMed  Google Scholar 

  22. Sekiya JK, Golladay GJ, Wojtys EM (2000) Autodigestion of a hamstring anterior cruciate ligament autograft following thermal shrinkage. A case report and sentinel of concern. J Bone Joint Surg Am 82-A:1454–1457

    CAS  PubMed  Google Scholar 

  23. Thabit G III (1998) The arthroscopic monopolar radiofrequency treatment of chronic anterior cruciate ligament instability. Oper Tech Sports Med 6:157–166

    Google Scholar 

  24. Vangsness CT Jr, Polousky JD, Parkinson AB, Hedman TP (2003) Radiofrequency thermal effects on the human meniscus. An in vitro study of systems with monopolar and bipolar electrodes. Am J Sports Med 31:253–256

    PubMed  Google Scholar 

  25. Wallace CD, Amiel D (1991) Vascular assessment of the periarticular ligaments of the rabbit knee. J Orthop Res 9:787–791

    CAS  PubMed  Google Scholar 

  26. Yetkinler DN, Greenleaf JE, Sherman OH (2002) Histologic analysis of radiofrequency energy chondroplasty. Clin Sports Med 21:649–661

    PubMed  Google Scholar 

Download references

Acknowledgements

This work is funded by grants from Veterans General Hospital-Taipei (VTY90-P1-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Chieh Hung.

Additional information

Wei-Jau Jiae and Chang-Hung Huang contributed equally to this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, HL., Jiae, WJ., Huang, CH. et al. Thermal effects after anterior cruciate ligament shrinkage using radiofrequency technology: a porcine cadaver study. Knee Surg Sports Traumatol Arthrosc 13, 619–624 (2005). https://doi.org/10.1007/s00167-004-0614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-004-0614-5

Keywords

Navigation