Skip to main content
Log in

Effects of short-term cycling on knee joint proprioception in ACL-deficient patients

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

It has previously been shown that knee injuries with ACL ruptures may lead to decreased proprioception and that exercise in a normal population, uninjured individuals, may reduce the proprioceptive ability. How proprioception is affected by exercise in patients with ACL deficiency has, to our knowledge, not been studied before. Knee joint proprioception was estimated in 36 patients, 18 males and 18 females, with ACL deficiency by measuring thresholds for detection of slow passive motion before and after a short period of exercise on an ergometer bicycle. In addition, the results were compared with a control group of 24 individuals of the same age. We found trends of enhanced proprioception towards extension in the patient group after cycling, but not in the control group. Towards flexion, both groups showed poorer proprioception after cycling. When difference scores of proprioceptive change in each group were compared, a trend towards different reaction upon cycling between the groups was seen in measurement towards extension from 20° where the patients seemed to improve proprioception, which the controls did not. The results are not conclusive in this pilot study, but the possibility that ACL-deficient patients and controls may not react likewise to cycling, as regards their proprioceptive ability, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Assimakopoulos AP, Katonis PG, Agapitos MV, Exarchou EI (1992) The innervation of the human meniscus. Clin Orthop 232–236

  2. Barrack RL, Skinner HB, Buckley SL (1989) Proprioception in the anterior cruciate deficient knee. Am J Sports Med 17:1–6

    CAS  PubMed  Google Scholar 

  3. Barrack RL, Skinner HB, Cook SD (1984) Proprioception of the knee joint. Paradoxical effect of training. Am J Phys Med 63:175–181

    CAS  PubMed  Google Scholar 

  4. Borg G (1990) Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health 16:55–58

    PubMed  Google Scholar 

  5. Bouët V, Gahery Y (2000) Muscular exercise improves knee position sense in humans. Neurosci Lett 289:143–146

    Article  PubMed  Google Scholar 

  6. Corrigan JP, Cashman WF, Brady MP (1992) Proprioception in the cruciate deficient knee. J Bone Joint Surg Br 74:247–250

    CAS  PubMed  Google Scholar 

  7. Djupsjobacka M, Johansson H, Bergenheim M, Sjolander P (1995) Influences on the gamma-muscle-spindle system from contralateral muscle afferents stimulated by KCl and lactic acid. Neurosci Res 21:301–309

    PubMed  Google Scholar 

  8. Djupsjobacka M, Johansson H, Bergenheim M, Wenngren BI (1995) Influences on the gamma-muscle spindle system from muscle afferents stimulated by increased intramuscular concentrations of bradykinin and 5-HT. Neurosci Res 22:325–333

    Article  PubMed  Google Scholar 

  9. Ericson M (1986) On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer. Scand J Rehabil Med Suppl 16:1–43

    CAS  PubMed  Google Scholar 

  10. Ericson MO, Nisell R, Arborelius UP, Ekholm J (1985) Muscular activity during ergometer cycling. Scand J Rehabil Med 17:53–61

    CAS  PubMed  Google Scholar 

  11. Friden T, Roberts D, Movin T, Wredmark T (1998) Function after anterior cruciate ligament injuries. Influence of visual control and proprioception. Acta Orthop Scand 69:590–594

    CAS  PubMed  Google Scholar 

  12. Friden T, Roberts D, Zatterstrom R, Lindstrand A, Moritz U (1996) Proprioception in the nearly extended knee. Measurements of position and movement in healthy individuals and in symptomatic anterior cruciate ligament injured patients. Knee Surg Sports Traumatol Arthrosc 4:217–224

    CAS  PubMed  Google Scholar 

  13. Friden T, Roberts D, Zatterstrom R, Lindstrand A, Moritz U (1997) Proprioception after an acute knee ligament injury: a longitudinal study on 16 consecutive patients. J Orthop Res 15:637–644

    CAS  PubMed  Google Scholar 

  14. Friden T, Roberts D, Zatterstrom R, Lindstrand A, Moritz U (1999) Proprioceptive defects after an anterior cruciate ligament rupture: the relation to associated anatomical lesions and subjective knee function. Knee Surg Sports Traumatol Arthrosc 7:226–231

    Google Scholar 

  15. Gordon JGC (1991) Modality coding in the somatic sensory system. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science, 3rd edn. Elsevier, New York, pp 564–581

  16. Grigg P, Hoffman AH (1982) Properties of Ruffini afferents revealed by stress analysis of isolated sections of cat knee capsule. J Neurophysiol 47:41–54

    CAS  PubMed  Google Scholar 

  17. Hutton RS, Nelson DL (1986) Stretch sensitivity of Golgi tendon organs in fatigued gastrocnemius muscle. Med Sci Sports Exerc 18:69–74

    CAS  PubMed  Google Scholar 

  18. Jerosch J, Prymka M (1996) Knee joint proprioception in normal volunteers and patients with anterior cruciate ligament tears, taking special account of the effect of a knee bandage. Arch Orthop Trauma Surg 115:162–166

    CAS  PubMed  Google Scholar 

  19. Johansson H, Sjolander P, Sojka P (1990) Activity in receptor afferents from the anterior cruciate ligament evokes reflex effects on fusimotor neurones. Neurosci Res 8:54–59

    Article  CAS  PubMed  Google Scholar 

  20. Johansson H, Sjolander P, Sojka P (1991) A sensory role for the cruciate ligaments. Clin Orthop 161–178

  21. Johansson H, Sjolander P, Sojka P (1991) Receptors in the knee joint ligaments and their role in the biomechanics of the joint. Crit Rev Biomed Eng 18:341–368

    CAS  PubMed  Google Scholar 

  22. Johansson H, Sjolander P, Sojka P (1991) Fusimotor reflex profiles of individual triceps surae primary muscle spindle afferents assessed with multi-afferent recording technique. J Physiol 85:6–19

    CAS  Google Scholar 

  23. Knuttgen HG, Saltin B (1972) Muscle metabolites and oxygen uptake in short-term submaximal exercise in man. J Appl Physiol 32:690–694

    Google Scholar 

  24. Krauspe R, Schmidt M, Schaible HG (1992) Sensory innervation of the anterior cruciate ligament. An electrophysiological study of the response properties of single identified mechanoreceptors in the cat. J Bone Joint Surg Am 74:390–397

    CAS  PubMed  Google Scholar 

  25. Lattanzio PJ, Petrella RJ (1998) Knee proprioception: a review of mechanisms, measurements, and implications of muscular fatigue. Orthopedics 21:463–471

    CAS  PubMed  Google Scholar 

  26. Lattanzio PJ, Petrella RJ, Sproule JR, Fowler PJ (1997) Effects of fatigue on knee proprioception. Clin J Sport Med 7:22–27

    CAS  PubMed  Google Scholar 

  27. Ljubisavljevic M, Anastasijevic R (1996) Fusimotor system in muscle fatigue. J Peripher Nerv Syst 1:83–96

    CAS  PubMed  Google Scholar 

  28. Ljubisavljevic M, Jovanovic K, Anastasijevic R (1992) Changes in discharge rate of fusimotor neurones provoked by fatiguing contractions of cat triceps surae muscles. J Physiol 445:499–513

    CAS  PubMed  Google Scholar 

  29. Ljubisavljevic M, Jovanovic K, Anastasijevic R (1992) Changes in discharge rate of cat hamstring fusimotor neurones during fatiguing contractions of triceps surae muscles. Brain Res 579:246–252

    Article  CAS  PubMed  Google Scholar 

  30. Marks R, Quinney HA (1993) Effect of fatiguing maximal isokinetic quadriceps contractions on ability to estimate knee-position. Percept Mot Skills 77:1195–1202

    CAS  PubMed  Google Scholar 

  31. Nawata K, Teshima R, Morio Y, Hagino H, Enokida M, Yamamoto K (1999) Anterior–posterior knee laxity increased by exercise. Quantitative evaluation of physiologic changes. Acta Orthop Scand 70:261–264

    CAS  PubMed  Google Scholar 

  32. Noakes TD (2000) Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports 10:123–145

    Article  CAS  PubMed  Google Scholar 

  33. Pedersen J, Ljubisavljevic M, Bergenheim M, Johansson H (1998) Alterations in information transmission in ensembles of primary muscle spindle afferents after muscle fatigue in heteronymous muscle. Neuroscience 84:953–959

    Article  CAS  PubMed  Google Scholar 

  34. Pedersen J, Lonn J, Hellstrom F, Djupsjobacka M, Johansson H (1999) Localized muscle fatigue decreases the acuity of the movement sense in the human shoulder. Med Sci Sports Exerc 31:1047–1052

    Article  CAS  PubMed  Google Scholar 

  35. Risberg MA, Beynnon BD, Peura GD, Uh BS (1999) Proprioception after anterior cruciate ligament reconstruction with and without bracing. Knee Surg Sports Traumatol Arthrosc 7:303–309

    CAS  PubMed  Google Scholar 

  36. Roberts D, Ageberg E, Andersson G, Friden T (2003) Effects of short-term cycling on knee joint proprioception: comparison of proprioceptive ability before and after cycling on an ergometer bicycle. Am J Sports Med 31

  37. Roberts D, Friden T, Stomberg A, Lindstrand A, Moritz U (2000) Bilateral proprioceptive defects in patients with a unilateral anterior cruciate ligament reconstruction: a comparison between patients and healthy individuals. J Orthop Res 18:565–571

    CAS  PubMed  Google Scholar 

  38. Roberts D, Friden T, Zatterstrom R, Lindstrand A, Moritz U (1999) Proprioception in people with anterior cruciate ligament-deficient knees: comparison of symptomatic and asymptomatic patients. J Orthop Sports Phys Ther 29:587–594

    CAS  PubMed  Google Scholar 

  39. Schultz RA, Miller DC, Kerr CS, Micheli L (1984) Mechanoreceptors in human cruciate ligaments. A histological study. J Bone Joint Surg Am 66:1072–1076

    CAS  PubMed  Google Scholar 

  40. Schutte MJ, Dabezies EJ, Zimny ML, Happel LT (1987) Neural anatomy of the human anterior cruciate ligament. J Bone Joint Surg Am 69:243–247

    CAS  PubMed  Google Scholar 

  41. Sjolander P (1989) A sensory role for the cruciate ligaments. Dissertation, University of Umeå, Sweden

  42. Sjolander P, Johansson H, Sojka P, Rehnholm A (1989) Sensory nerve endings in the cat cruciate ligaments: a morphological investigation. Neurosci Lett 102:33–38

    Article  CAS  PubMed  Google Scholar 

  43. Skinner H, Wyatt MP, Stone ML, Hodgdon JA, Barrack RL (1986) Exercise-related knee joint laxity. Am J Sports Med 14:30–34

    CAS  PubMed  Google Scholar 

  44. Skinner HB, Wyatt MP, Hodgdon JA, Conard DW, Barrack RL (1986) Effect of fatigue on joint position sense of the knee. J Orthop Res 4:112–118

    CAS  PubMed  Google Scholar 

  45. Sojka P, Sjolander P, Johansson H, Djupsjobacka M (1991) Influence from stretch-sensitive receptors in the collateral ligaments of the knee joint on the gamma-muscle-spindle systems of flexor and extensor muscles. Neurosci Res 11:55–62

    Article  CAS  PubMed  Google Scholar 

  46. Steiner ME, Grana WA, Chillag K, Schelberg-Karnes E (1986) The effect of exercise on anterior–posterior knee laxity. Am J Sports Med 14:24–29

    CAS  PubMed  Google Scholar 

  47. Stoller DW, Markolf KL, Zager SA, Shoemaker SC (1983) The effects of exercise, ice, and ultrasonography on torsional laxity of the knee. Clin Orthop 174:172–180

    Google Scholar 

  48. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop 198:43–49

    Google Scholar 

  49. Weisman G, Pope MH, Johnson RJ (1980) Cyclic loading in knee ligament injuries. Am J Sports Med 8:24–30

    CAS  PubMed  Google Scholar 

  50. Zätterström R (1999) The injured anterior cruciate ligament and neuromuscular rehabilitation. Thesis, University of Lund, Sweden

Download references

Acknowledgements

The authors thank M. Christensson, Department of Medical Technology, for his construction of the apparatus used, all the subjects who volunteered to take part in the study, and P.-E. Isberg for statistical advice. Financial support from Medicinska forskningsrådet, project no. 09509, Stiftelsen för Bistånd åt Vanföra i Skåne, Syskonen Persson’s Donation fund, Svenska Sällskapet för Medicinsk Forskning, Thyr och Thure Stenemark’s Fund, Centrum för Idrottsforskning, the Swedish Society of Medicine, the National Board of Health and Welfare and the Faculty of Medicine, Lund University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, D., Ageberg, E., Andersson, G. et al. Effects of short-term cycling on knee joint proprioception in ACL-deficient patients. Knee Surg Sports Traumatol Arthrosc 12, 357–363 (2004). https://doi.org/10.1007/s00167-003-0468-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-003-0468-2

Keywords

Navigation