Skip to main content
Log in

Biomechanik der Sagittalebene des Kniegelenks

Bedeutung des tibialen „slope“ für die Kniechirurgie

Biomechanics of the sagittal plane of the knee joint

Importance of the tibial slope for knee surgery

  • Leitthema
  • Published:
Arthroskopie Aims and scope

Zusammenfassung

Veröffentlichungen über die Bedeutung des „posterior tibial slope“, die Neigung des Tibiaplateaus nach dorsal, nehmen in den letzten Jahren stetig zu. Primär trat dieses Thema als „Nebeneffekt“ der valgisierenden hohen tibialen Osteotomie (HTO) in den Fokus, als erkannt wurde, dass die Eingriffe in der Frontalebene mit Veränderungen in der Sagittalen einhergehen. Die Neigung des Tibiaplateaus kann im seitlichen Röntgen und in sagittalen MRT-Schichten gemessen werden. Es besteht jedoch bislang keine Einigkeit darüber, welche Messtechnik anzuwenden ist, und wann ein Neigungswinkel als steil bzw. zu steil bewertet werden muss. Gemäß der Darstellung im seitlichen Röntgen wurde in ersten Studien an den Knochenkonturen des medialen und lateralen Plateaus gezeigt: Ein steiler tibialer Slope führt zu vermehrter anteriorer tibialer Translation (ATT); diese Zusammenhänge gibt es sowohl im kreuzbandinsuffizienten als auch im kreuzbandintakten Knie. Selbstverständlich ist nicht der Knochen die eigentliche oder einzige formgebende Struktur: Die Gelenkoberfläche wird vom Knorpel und von den Menisken gebildet. Folglich wird in immer mehr Studien auch der sog. weichteilige Slope bestimmt. Bei Patienten mit einer Ruptur des vorderen Kreuzbands (VKB) zeigt sich nicht nur der knöcherne, sondern auch der weichteilige mediale und laterale Slope signifikant steiler als bei den gesunden Vergleichspersonen. Die v. a. durch den steilen lateralen Slope beim „Knee-in-and-toe-out“-Mechanismus vermittelte ATT zeichnet sich wahrscheinlich für mehr als 50 % aller VKB-Rupturen verantwortlich. Oft ist dieser Mechanismus mit einer abrupten intensiven Quadrizepsaktivierung und reduzierter „Hamstring“-Koaktivierung kombiniert. Die Rolle der Hamstrings in Abhängigkeit vom tibialen Slope wird jedoch noch kontrovers diskutiert.

Abstract

Publications on the importance of the posterior tibial slope, i.e. the inclination of the tibial plateau dorsally, have shown a continuous increase in recent years. Initially this topic came into focus as a side effect of valgus high tibial osteotomy (HTO), when it was recognized that surgery in the frontal plane was associated with changes in the sagittal plane. The slope of the tibial plateau can be measured in lateral X‑rays and in sagittal magnetic resonance imaging (MRI) layers; however, until now there has been no consensus as to which measurement technique should be used and when a slope angle should be regarded as steep or too steep. According to the findings in lateral X‑rays in the first studies on bone contours of the medial and lateral plateau, the following could be shown: a steeper lateral slope leads to more anterior tibial translation (ATT) and this association is found both in knees with cruciate ligament insufficiency as well as in knees with intact cruciate ligaments. Of course, the bone is not the actual or the only structure providing the shape: the joint surface is formed from cartilage and the meniscus. Accordingly, in more and more studies the so-called soft tissue slope is also measured. In patients with a rupture of the anterior cruciate ligament (ACL), not only the bony slope but also the medial and lateral soft tissue slopes are significantly steeper compared to healthy persons. Especially the steep lateral slope in the so-called knee-in and toe-out mechanism leads to ATT and is responsible for more than 50% of all ACL ruptures. Very often this mechanism is combined with an abrupt intensive quadriceps activation and a reduced hamstring co-activation; however, the role of the hamstring depending on the tibial slope is still controversially discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Agneskirchner JD, Hurschler C, Stukenborg-Colsman C, Imhoff AB, Lobenhoffer P (2004) Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004. Arch Orthop Trauma Surg 124:575–584

    CAS  PubMed  Google Scholar 

  2. Allman FL (1976) Clinical diagnosis of Anterior cruciate ligament instability in the athlete. Am J Sports Med 4:92

    Google Scholar 

  3. Bernhardson AS, Aman ZS, DePhillipo NN, Dornan GJ, Storaci HW, Brady AW, Nakama G, LaPrade RF (2019) Tibial slope and its effect on graft force in posterior cruciate ligament reconstructions. Am J Sports Med 47:1168–1174

    PubMed  Google Scholar 

  4. Beynnon BD, Fleming BC, Labovitch R, Parsons B (2002) Chronic anterior cruciate ligament deficiency is associated with increased anterior translation of the tibia during the transition from non-weightbearing to weightbearing. J Orthop Res 20:332–337

    PubMed  Google Scholar 

  5. Bisson LJ, Gurske-DePerio J (2010) Axial and sagittal knee geometry as a risk factor for noncontact anterior cruciate ligament tear: a case-control study. Arthroscopy 26:901–906

    PubMed  Google Scholar 

  6. Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894–899

    PubMed  Google Scholar 

  7. Brazier J, Migaud H, Gougeon F, Cotten A, Fontaine C, Duquennoy A (1996) Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot 82:195–200

    CAS  PubMed  Google Scholar 

  8. Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 62:259–270

    CAS  PubMed  Google Scholar 

  9. Cinotti G, Sessa P, Ragusa G, Ripani FR, Postacchini R, Masciangelo R, Giannicola G (2013) Influence of cartilage and menisci on the sagittal slope of the tibial plateaus. Clin Anat 26:883–892

    PubMed  Google Scholar 

  10. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76:745–749

    CAS  PubMed  Google Scholar 

  11. Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 23:2846–2852

    PubMed  Google Scholar 

  12. El-Azab H, Klabklay P, Paul J, Imhoff AB, Hinterwimmer S (2009) Patellar height and posterior tibial slope after open- and closed-wedge high tibial osteotomy: a radiological study on 100 patients. Am J Sports Med 38:323–329

    PubMed  Google Scholar 

  13. Elmansori A, Lording T, Dumas R, Elmajri K, Neyret P, Lustig S (2017) Proximal tibial bony and meniscal slopes are higher in ACL injured subjects than controls: a comparative MRI study. Knee Surg Sports Traumatol Arthrosc 25:1598–1605

    PubMed  Google Scholar 

  14. Fening SD, Kovacic J, Kambic H, McLean S, Scott J, Miniaci A (2008) The effects of modified posterior tibial slope on anterior cruciate ligament strain and knee kinematics: a human cadaveric study. J Knee Surg 21:205–211

    PubMed  PubMed Central  Google Scholar 

  15. Fleming BC, Renstrom PA, Beynnon BD, Engstrom B, Peura GD, Badger GJ, Johnson RJ (2001) The effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech 34:163–170

    CAS  PubMed  Google Scholar 

  16. Fukubayashi T, Torzilli PA, Sherman MF, Warren RF (1982) An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Joint Surg Am 64:258–264

    CAS  PubMed  Google Scholar 

  17. Giffin JR, Vogrin TM, Zantop T, Woo SR, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382

    PubMed  Google Scholar 

  18. Giffin JR, Stabile KJ, Zantop T, Vogrin TM, Woo SL, Harner CD (2007) Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Am J Sports Med 35:1443–1449

    PubMed  Google Scholar 

  19. Grassi A, Macchiarola L, Urrizola Barrientos F, Zicaro JP, Costa PM, Adravanti P, Dini F, Zaffagnini S (2019) Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case-control study. Am J Sports Med 47:285–295

    PubMed  Google Scholar 

  20. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, Dick RW, Engebretsen L, Garrett WE Jr., Hannafin JA, Hewett TE, Huston LJ, Ireland ML, Johnson RJ, Lephart S, Mandelbaum BR, Mann BJ, Marks PH, Marshall SW, Myklebust G, Noyes FR, Powers C, Shields C Jr., Shultz SJ, Silvers H, Slauterbeck J, Taylor DC, Teitz CC, Wojtys EM, Yu B (2006) Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med 34:1512–1532

    PubMed  Google Scholar 

  21. Gwinner C, Weiler A, Roider M, Schaefer FM, Jung TM (2017) Tibial slope strongly influences knee stability after posterior cruciate ligament reconstruction: a prospective 5‑ to 15-year follow-up. Am J Sports Med 45:355–361

    PubMed  Google Scholar 

  22. Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC Jr., Mansouri H, Dabezies E (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 90:2724–2734

    PubMed  PubMed Central  Google Scholar 

  23. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr., Dabezies E, Beynnon BD (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38:54–62

    PubMed  Google Scholar 

  24. Hinterwimmer S, Beitzel K, Paul J, Kirchhoff C, Sauerschnig M, von Eisenhart-Rothe R, Imhoff AB (2011) Control of posterior tibial slope and patellar height in open-wedge valgus high tibial osteotomy. Am J Sports Med 39:851–856

    PubMed  Google Scholar 

  25. Hohmann E, Bryant A, Imhoff AB (2006) The effect of closed wedge high tibial osteotomy on tibial slope: a radiographic study. Knee Surg Sports Traumatol Arthrosc 14:454–459

    PubMed  Google Scholar 

  26. Hohmann E, Bryant A, Reaburn P, Tetsworth K (2010) Does posterior tibial slope influence knee functionality in the anterior cruciate ligament-deficient and anterior cruciate ligament-reconstructed knee? Arthroscopy 26:1496–1502

    PubMed  Google Scholar 

  27. Hohmann E, Bryant A, Reaburn P, Tetsworth K (2011) Is there a correlation between posterior tibial slope and non-contact anterior cruciate ligament injuries? Knee Surg Sports Traumatol Arthrosc 19(Suppl.1):109–114

    Google Scholar 

  28. Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP (2009) Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res 467:2066–2072

    PubMed  PubMed Central  Google Scholar 

  29. Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469:2377–2384

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Imhoff FB, Mehl J, Comer BJ, Obopilwe E, Cote MP, Feucht MJ, Wylie JD, Imhoff AB, Arciero RA, Beitzel K (2019) Slope-reducing tibial osteotomy decreases ACL-graft forces and anterior tibial translation under axial load. Knee Surg Sports Traumatol Arthrosc 27:3381–3389

    PubMed  Google Scholar 

  31. Imran A, O’Connor JJ (1997) Theoretical estimates of cruciate ligament forces: effects of tibial surface geometry and ligament orientations. Proc Inst Mech Eng 21:425–439

    Google Scholar 

  32. Julliard R, Genin P, Weil G, Palmkrantz P (1993) The median functional slope of the tibia. Principle. Technique of measurement. Value. Interest. Rev Chir Orthop Reparatrice Appar Mot 79:625–634

    CAS  PubMed  Google Scholar 

  33. Karimi E, Norouzian M, Birjandinejad A, Zandi R, Makhmalbaf H (2017) Measurement of posterior tibial slope using magnetic resonance imaging. Arch Bone Jt Surg 5:435–439

    PubMed  PubMed Central  Google Scholar 

  34. Kessler MA, Burkart A, Martinek V, Beer A, Imhoff AB (2003) Development of a 3-dimensional method to determine the tibial slope with multislice-CT. Z Orthop Ihre Grenzgeb 141:143–147

    CAS  PubMed  Google Scholar 

  35. Khan MS, Seon JK, Song EK (2011) Risk factors for anterior cruciate ligament injury: assessment of tibial plateau anatomic variables on conventional MRI using a new combined method. Int Orthop 35:1251–1256

    PubMed  PubMed Central  Google Scholar 

  36. Kobayashi H, Kanamura T, Koshida S, Miyashita K, Okado T, Shimizu T, Yokoe K (2010) Mechanisms of the anterior cruciate ligament injury in sports activities: a twenty-year clinical research of 1,700 athletes. J Sports Sci Med 9:669–675

    PubMed  PubMed Central  Google Scholar 

  37. Kolbe R, Schmidt-Hebbel A, Forkel P, Pogorzelski J, Imhoff AB, Feucht MJ (2019) Steep lateral tibial slope and lateral-to-medial slope asymmetry are risk factors for concomitant posterolateral meniscus root tears in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 27:2585–2591

    PubMed  Google Scholar 

  38. Kostogiannis I, Sward P, Neuman P, Friden T, Roos H (2011) The influence of posterior-inferior tibial slope in ACL injury. Knee Surg Sports Traumatol Arthrosc 19:592–597

    PubMed  Google Scholar 

  39. Li Y, Hong L, Feng H, Wang Q, Zhang J, Song G, Chen X, Zhuo H (2014) Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2‑year follow-up study. Am J Sports Med 42:927–933

    PubMed  Google Scholar 

  40. Liu W, Maitland ME (2003) Influence of anthropometric and mechanical variations on functional instability in the ACL-deficient knee. Ann Biomed Eng 31:1153–1161

    PubMed  Google Scholar 

  41. Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13:930–935

    CAS  PubMed  Google Scholar 

  42. Marti CB, Gautier E, Wachtl SW, Jakob RP (2004) Accuracy of frontal and sagittal plane correction in open-wedge high tibial osteotomy. Arthroscopy 20:366–372

    PubMed  Google Scholar 

  43. Martineau PA, Fening SD, Miniaci A (2010) Anterior opening wedge high tibial osteotomy: the effect of increasing posterior tibial slope on ligament strain. Can J Surg 53:261–267

    PubMed  PubMed Central  Google Scholar 

  44. McLean SG, Lucey SM, Rohrer S, Brandon C (2010) Knee joint anatomy predicts high-risk in vivo dynamic landing knee biomechanics. Clin Biomech 25:781–788

    Google Scholar 

  45. Meister K, Talley MC, Horodyski MB, Indelicato PA, Hartzel JS, Batts J (1998) Caudal slope of the tibia and its relationship to noncontact injuries to the ACL. Am J Knee Surg 11:217–219

    CAS  PubMed  Google Scholar 

  46. Noyes FR, Goebel SX, West J (2005) Opening wedge tibial osteotomy: the 3‑triangle method to correct axial alignment and tibial slope. Am J Sports Med 33:378–387

    PubMed  Google Scholar 

  47. Queiros CM, Abreu FG, Moura JL, Venturi de Abreu G, Vieira TD, Helfer L, Sonnery-Cottet B (2019) Anterior closing-wedge osteotomy for posterior slope correction with tibial tubercle preservation. Arthrosc Tech 8:e1105–e1109

    PubMed  PubMed Central  Google Scholar 

  48. Salmon LJ, Heath E, Akrawi H, Roe JP, Linklater J, Pinczewski LA (2018) 20-year outcomes of anterior cruciate ligament reconstruction with hamstring tendon autograft: the catastrophic effect of age and posterior tibial slope. Am J Sports Med 46:531–543

    PubMed  Google Scholar 

  49. Shao Q, MacLeod TD, Manal K, Buchanan TS (2011) Estimation of ligament loading and anterior tibial translation in healthy and ACL-deficient knees during gait and the influence of increasing tibial slope using EMG-driven approach. Ann Biomed Eng 39:110–121

    PubMed  Google Scholar 

  50. Sharifi M, Shirazi-Adl A, Marouane H (2018) Computation of the role of kinetics, kinematics, posterior tibial slope and muscle cocontraction on the stability of ACL-deficient knee joint at heel strike—Towards identification of copers from non-copers. J Biomech 22:171–182

    Google Scholar 

  51. Shelburne KB, Torry MR, Pandy MG (2006) Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res 24:1983–1990

    PubMed  Google Scholar 

  52. Shimokochi Y, Shultz SJ (2008) Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train 43:396–408

    PubMed  PubMed Central  Google Scholar 

  53. Shoemaker SC, Markolf KL (1986) The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J Bone Joint Surg Am 68:71–79

    CAS  PubMed  Google Scholar 

  54. Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43:1702–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15:207–213

    CAS  PubMed  Google Scholar 

  56. Sonnery-Cottet B, Mogos S, Thaunat M, Archbold P, Fayard JM, Freychet B, Clechet J, Chambat P (2014) Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 42:1873–1880

    PubMed  Google Scholar 

  57. Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 16:112–117

    PubMed  Google Scholar 

  58. Tischer T, Paul J, Pape D, Hirschmann MT, Imhoff AB, Hinterwimmer S, Feucht MJ (2017) The impact of osseous malalignment and realignment procedures in knee ligament surgery: a systematic review of the clinical evidence. Orthop J Sports Med 275(3):2325967117697287. https://doi.org/10.1177/2325967117697287

    Article  Google Scholar 

  59. Todd MS, Lalliss S, Garcia E, DeBerardino TM, Cameron KL (2010) The relationship between posterior tibial slope and anterior cruciate ligament injuries. Am J Sports Med 38:63–67

    PubMed  Google Scholar 

  60. Torzilli PA, Deng X, Warren RF (1994) The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee. Am J Sports Med 22:105–112

    CAS  PubMed  Google Scholar 

  61. Uhorchak JM, Scoville CR, Williams GN, Arciero RA, Pierre StP, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31:831–842

    PubMed  Google Scholar 

  62. Vyas S, van Eck CF, Vyas N, Fu FH, Otsuka NY (2011) Increased medial tibial slope in teenage pediatric population with open physes and anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 19:372–377

    PubMed  Google Scholar 

  63. Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP (2013) Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med 41:2800–2804

    PubMed  Google Scholar 

  64. Wordeman SC, Quatman CE, Kaeding CC, Hewett TE (2012) In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: a systematic review and meta-analysis. Am J Sports Med 40:1673–1681

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hinterwimmer.

Ethics declarations

Interessenkonflikt

S. Hinterwimmer und M. Feucht geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

P. Lobenhoffer

J. Dickschas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinterwimmer, S., Feucht, M. Biomechanik der Sagittalebene des Kniegelenks. Arthroskopie 34, 2–9 (2021). https://doi.org/10.1007/s00142-020-00407-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00142-020-00407-w

Schlüsselwörter

Keywords

Navigation