# **EDITORIAL**



# Benefits and risks of the P/F approach

L. Gattinoni\*, F. Vassalli and F. Romitti

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature and ESICM

#### Introduction

The  $PaO_2/FIO_2$  ratio represents the pressure exerted in the blood by the unbound molecules of oxygen, normalized to the fractional volume of inspired oxygen. The  $PaO_2/FIO_2$  ratio is used to assess the lung's capability to oxygenate the blood, primarily in ARDS, where its thresholds of 150, 200, and 300 are used/proposed to classify ARDS severity [1, 2]. Ideally, a given  $PaO_2/FIO_2$  ratio value should correspond to a definite lung severity, independently of  $FIO_2$ . In reality, the same severity may be associated with quite different  $PaO_2/FIO_2$  values, depending on several factors, as previously described [3].

## Alveolar PO<sub>2</sub>

Ideally,  $PaO_2$  should be normalized to alveolar  $PO_2$  ( $PAO_2$ ) instead of  $FIO_2$ . Indeed, for the same  $PaO_2$ /  $FIO_2$  ratio, the  $PaO_2$ / $PAO_2$  ratio may vary depending on barometric pressure (Pb),  $PaCO_2$ , and the respiratory exchange ratio (R), as may be easily understood by examining the alveolar air equation:

$$PAO_2 = FIO_2 \times (Pb - 47) - \frac{PaCO_2}{R}$$
 (1)

Consequently, an identical  $PaO_2/FIO_2$  ratio of 150 measured at the barometric pressure of Mexico City (2250 m) or Göttingen (150 m) in two patients breathing 30%  $O_2$ , with identical  $PaCO_2/R$  ratios, would result in a sharply different  $PaO_2/PAO_2$  ratios: 0.32 in Göttingen, decidedly less than the 0.49 in Mexico. The impact of  $PaCO_2/R$  ratio on  $PAO_2$  is less dramatic, unless extracorporeal  $CO_2$  removal is in use. In this case, the R may be very low, producing a consistent decrease in the alveolar  $PO_2$ , if  $FIO_2$  is not adequately increased [4–6].

\*Correspondence: gattinoniluciano@gmail.com Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen (UMG), Robert-Koch-Straße 40, 37075 Göttingen, Germany

# Arterial PO<sub>2</sub>

According to Riley's model (two compartment lung, one ideally perfused and ventilated, one perfused and not ventilated) [7], the arterial oxygen content (CaO<sub>2</sub>) is the weighted mean of the oxygen contents blended from the two compartments. The blood from the perfused/ventilated compartment will have a PO<sub>2</sub> equal to the alveolar PAO<sub>2</sub> in equilibrium with the capillary oxygen content (CcO<sub>2</sub>), while the blood coming from the perfused/nonventilated compartment will have a PO<sub>2</sub> and oxygen content equal to the mixed venous blood (CvO<sub>2</sub>). The fraction of the cardiac output coming from the perfused/non-ventilated compartment (venous admixture) may be easily quantitated at the bedside:

Venous admixture = 
$$\frac{\text{CcO}_2 - \text{CaO}_2}{\text{CcO}_2 - \text{CvO}_2}$$
. (2)

Although venous admixture is the variable that more accurately assesses oxygenation impairment, it nowadays is considered impractical and cumbersome; hence, the  $PaO_2/FIO_2$  is used for severity assessment. The limits of the  $PaO_2/FIO_2$  approach can be understood by considering Eq. 1 (which defines the  $PAO_2$ ) together with Eq. 2 (which defines the venous admixture). Indeed,

- 1.  $CcO_2$  strictly depends on PAO<sub>2</sub>, which is proportional to the FIO<sub>2</sub> (Eq. 1), while the  $CaO_2$  is proportional to the PaO<sub>2</sub> (through the oxygen dissociation curve) [8]. Therefore, the difference ( $CcO_2 CaO_2$ ) and the ratio ( $CaO_2/CcO_2$ ) are strictly related and hold the same physiological meaning of  $PaO_2/FIO_2$  ratio.
- 2. Because the  $(CcO_2 CaO_2)$  difference equals the product: [venous admixture ×  $(CcO_2 CvO_2)$ ], the same  $(CcO_2 CaO_2)$ , i.e., the same  $PaO_2/FIO_2$ , may derive from myriad combinations of venous admixture fraction and  $(CcO_2 CvO_2)$ . These range from



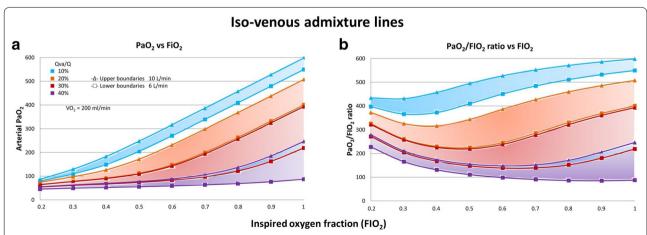
- extremely high venous admixture fraction and low  $(CcO_2 CvO_2)$ , i.e., high  $CvO_2$ , or vice versa.
- 3. CcO<sub>2</sub> primarily depends on FIO<sub>2</sub>; therefore, for a given FIO<sub>2</sub> any change of (CcO<sub>2</sub> CvO<sub>2</sub>) only depends upon the CvO<sub>2</sub>.
- 4. CvO<sub>2</sub>, for a given arterial oxygenation, strictly depends on oxygen consumption (VO<sub>2</sub>) and cardiac output (Qt); indeed, CvO<sub>2</sub>=CaO<sub>2</sub> VO<sub>2</sub>/Qt.

The consequence of these relationships are summarized in Fig. 1. Figure 1a shows  $PaO_2$  as a function of  $FIO_2$  at venous admixture levels from 10% to 40%, and a cardiac output range between 6 and 10 L/min, assuming an oxygen consumption of 200 ml/min. Two features are worth noting:

- ${\rm PaO_2}$  is lower at higher venous admixture levels and increases non-linearly with  ${\rm FIO_2}$  along the isovenous admixture lines.
- For a given oxygen consumption and venous admixture level, cardiac output exerts a tremendous effect on PaO<sub>2</sub>. It must be stressed, however, that the primary determinant is the CvO<sub>2</sub> (see point 4 above).

Figure 1b presents the  $PaO_2/FIO_2$  ratio as a function of  $FIO_2$  at venous admixture levels between 10% and 40% over a cardiac output range between 6 L/min (lover  $CvO_2$ ) and 10 L/min (higher  $CvO_2$ ). This figure underlines the limits of  $PaO_2/FIO_2$  alone in the assessment of lung injury severity. As an example, at venous admixture 20% and 10 L/min of cardiac output, the  $PaO_2/FIO_2$  always exceeds 300, i.e., no ARDS. However, for the same

venous admixture (20%) with a lower cardiac output of 6 L/min, a given patient would be classified as "mild ARDS" across  ${\rm FIO}_2$  values from 0.3 to 0.7 but classified as "no ARDS" at  ${\rm FIO}_2$  values from 0.7 to 1.0. Another hypothetical patient at venous admixture of 30%, depending on  ${\rm FIO}_2$  and cardiac output, may oscillate between no ARDS, mild ARDS, or moderate-severe ARDS.


#### Clinical use

## Assessment of severity

Although the PaO<sub>2</sub>/FIO<sub>2</sub> ratio has limits as a surrogate of venous admixture, the PaO<sub>2</sub>/FIO<sub>2</sub> ratio offers several advantages: first, it is easy to measure; second, when tested across large populations (but not necessarily in individual patients), the PaO<sub>2</sub>/FIO<sub>2</sub> reflects reasonably well the severity of anatomical derangements measured by CT scanning [1]. Nonetheless, the accuracy of PaO<sub>2</sub>/FIO<sub>2</sub> ratio for indexing ARDS severity (e.g., Berlin ARDS definition) would improve greatly if determined at a standard PEEP value. In previous work [10], we used 5 cmH<sub>2</sub>O to avoid the masking effect of higher PEEP on PaO<sub>2</sub>/FIO<sub>2</sub> ratio, which may be due either to decreasing venous admixture or altering hemodynamics. Standardization of FIO<sub>2</sub> would further improve the accuracy and comparability of severity among patients [11].

### **PEEP selection**

Changes in  $PaO_2/FIO_2$  ratio are frequently used to assess recruitability during ARDS, on the assumption that increases in  $PaO_2/FIO_2$  ratio are due to lung recruitment [12]. Unfortunately, increasing PEEP often decreases cardiac output. Theoretically, if the venous admixture and



**Fig. 1**  $PaO_2$  (**a**) and  $PaO_2$ / $FlO_2$  (**b**) as a function of  $FlO_2$  at shunt of 10%, 20%, 30%, and 40%. Values computed at cardiac output 10 L/min (upper boundaries) and 6 L/min (lower boundaries), at  $VO_2$  200 ml/min, hemoglobin 10 g/dL, and alveolar  $PCO_2$  40 mmHg.  $PaO_2$  values were derived from oxygen content, by using the oxygen dissociation curve equation, proposed by Severinghaus [9]. The arteriovenous oxygen difference was 2 ml/dL at 10 L/min of cardiac output and 3.3 ml/dL at 6 L/min of cardiac output. Note that, for a given shunt, the upper boundary would move up and the lower boundary would move down if the arteriovenous oxygen difference was lower than 2 ml/dL and greater than 3.3 ml/dL, respectively. Values were chosen as proof of the concept

oxygen consumption do not change, this would reduce the  $PaO_2/FIO_2$  ratio. However, this seldom occurs, as the venous admixture usually changes in proportion to the cardiac output [12–15]. Therefore, caution must be used when setting PEEP with the  $PaO_2/FIO_2$  approach, as its apparent that improvement may be due to decreased cardiac output in the absence of recruitment—a principle long known but often forgotten.

## **Conclusions**

- PaO<sub>2</sub>/FIO<sub>2</sub> ratio is a surrogate of venous admixture measurement for approximating ARDS severity and relates well to anatomical differences on the CT scan.
- At a given venous admixture, the PaO<sub>2</sub>/FIO<sub>2</sub> ratio may differ, depending on oxygen consumption and cardiac output. Conversely, for the same PaO<sub>2</sub>/FIO<sub>2</sub>, venous admixture may vary with FIO<sub>2</sub>.
- To better assess severity of lung injury and follow its evolution, PaO<sub>2</sub>/FIO<sub>2</sub> ratio should be measured at standardized levels of PEEP and FIO<sub>2</sub>. Selecting PEEP according to PaO<sub>2</sub>/FIO<sub>2</sub> ratio may be misleading if hemodynamics are not taken into account.

## Compliance with ethical standards

#### **Conflicts of interest**

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Received: 26 September 2018 Accepted: 10 October 2018 Published online: 23 October 2018

### References

 ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307:2526–2533

- Maiolo G, Collino F, Vasques F, Rapetti F, Tonetti T, Romitti F, Cressoni M, Chiumello D, Moerer O, Herrmann P, Friede T, Quintel M, Gattinoni L (2018) Reclassifying acute respiratory distress syndrome. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.201709-1804OC
- Aboab J, Louis B, Jonson B, Brochard L (2006) Relation between PaO<sub>2</sub>/ FIO<sub>2</sub> ratio and FIO<sub>2</sub>: a mathematical description. Intensive Care Med 32:1494–1497
- 4. Kolobow T, Gattinoni L, Tomlinson T, Pierce JE (1978) An alternative to breathing. J Thorac cardiovascr Surg 75:261–266
- Gattinoni L, Kolobow T, Tomlinson T, White D, Pierce J (1978) Control of intermittent positive pressure breathing (IPPB) by extracorporeal removal of carbon dioxide. Br J Anaesth 50:753–758
- Gattinoni L (2016) Ultra-protective ventilation and hypoxemia. Crit Care 20:130
- Riley RL, Cournand A (1949) Ideal alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J Appl Physiol 1:825–847
- Gabel RA (1980) Algorithms for calculating and correcting blood-gas and acid-base variables. Respir Physiol 42:211–232
- Severinghaus JW (1979) Simple, accurate equations for human blood O<sub>2</sub> dissociation computations. J Appl Physiol Respir Environ Exerc Physiol 46:599–602
- Caironi P, Carlesso E, Cressoni M, Chiumello D, Moerer O, Chiurazzi C, Brioni M, Bottino N, Lazzerini M, Bugedo G, Quintel M, Ranieri VM, Gattinoni L (2015) Lung recruitability is better estimated according to the Berlin definition of acute respiratory distress syndrome at standard 5 cm H<sub>2</sub>O rather than higher positive end-expiratory pressure: a retrospective cohort study. Crit Care Med 43:781–790
- Allardet-Servent J, Forel JM, Roch A, Guervilly C, Chiche L, Castanier M, Embriaco N, Gainnier M, Papazian L (2009) FIO<sub>2</sub> and acute respiratory distress syndrome definition during lung protective ventilation. Crit Care Med 37(202–207):e204–206
- 12. Lemaire F, Harf A, Simonneau G, Matamis D, Rivara D, Atlan G (1981) Gas exchange, static pressure-volume curve and positive-pressure ventilation at the end of expiration. Study of 16 cases of acute respiratory insufficiency in adults. Ann Anesthesiol Fr 22:435–441
- Freden F, Cigarini I, Mannting F, Hagberg A, Lemaire F, Hedenstierna G (1993) Dependence of shunt on cardiac output in unilobar oleic acid edema. Distribution of ventilation and perfusion. Intensive Care Med 19:185–190
- Dantzker DR, Lynch JP, Weg JG (1980) Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest 77:636–642
- Lynch JP, Mhyre JG, Dantzker DR (1979) Influence of cardiac output on intrapulmonary shunt. J Appl Physiol Respir Environ Exerc Physiol 46:215

   221