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Introduction
The PaO2/FIO2 ratio represents the pressure exerted 
in the blood by the unbound molecules of oxygen, nor-
malized to the fractional volume of inspired oxygen. 
The PaO2/FIO2 ratio is used to assess the lung’s capabil-
ity to oxygenate the blood, primarily in ARDS, where 
its thresholds of 150, 200, and 300 are used/proposed to 
classify ARDS severity [1, 2]. Ideally, a given PaO2/FIO2 
ratio value should correspond to a definite lung sever-
ity, independently of FIO2. In reality, the same severity 
may be associated with quite different PaO2/FIO2 values, 
depending on several factors, as previously described [3].

Alveolar PO2
Ideally, PaO2 should be normalized to alveolar PO2 
(PAO2) instead of FIO2. Indeed, for the same PaO2/
FIO2 ratio, the PaO2/PAO2 ratio may vary depending on 
barometric pressure (Pb), PaCO2, and the respiratory 
exchange ratio (R), as may be easily understood by exam-
ining the alveolar air equation:

Consequently, an identical PaO2/FIO2 ratio of 
150 measured at the barometric pressure of Mexico City 
(2250  m) or Göttingen (150  m) in two patients breath-
ing 30% O2, with identical PaCO2/R ratios, would result 
in a sharply different PaO2/PAO2 ratios: 0.32 in Göttin-
gen, decidedly less than the 0.49 in Mexico. The impact of 
PaCO2/R ratio on PAO2 is less dramatic, unless extracor-
poreal CO2 removal is in use. In this case, the R may be 
very low, producing a consistent decrease in the alveolar 
PO2, if FIO2 is not adequately increased [4–6].

(1)PAO2 = FIO2 × (Pb− 47)−
PaCO2

R

Arterial PO2
According to Riley’s model (two compartment lung, one 
ideally perfused and ventilated, one perfused and not 
ventilated) [7], the arterial oxygen content (CaO2) is the 
weighted mean of the oxygen contents blended from the 
two compartments. The blood from the perfused/venti-
lated compartment will have a PO2 equal to the alveolar 
PAO2 in equilibrium with the capillary oxygen content 
(CcO2), while the blood coming from the perfused/non-
ventilated compartment will have a PO2 and oxygen 
content equal to the mixed venous blood (CvO2). The 
fraction of the cardiac output coming from the perfused/
non-ventilated compartment (venous admixture) may be 
easily quantitated at the bedside:

Although venous admixture is the variable that more 
accurately assesses oxygenation impairment, it nowadays 
is considered impractical and cumbersome; hence, the 
PaO2/FIO2 is used for severity assessment. The limits of 
the PaO2/FIO2 approach can be understood by consider-
ing Eq.  1 (which defines the PAO2) together with Eq.  2 
(which defines the venous admixture). Indeed,

1.	 CcO2 strictly depends on PAO2, which is propor-
tional to the FIO2 (Eq. 1), while the CaO2 is propor-
tional to the PaO2 (through the oxygen dissociation 
curve) [8]. Therefore, the difference (CcO2  –  CaO2) 
and the ratio (CaO2/CcO2) are strictly related and 
hold the same physiological meaning of PaO2/FIO2 
ratio.

2.	 Because the (CcO2  –  CaO2) difference equals the 
product: [venous admixture × (CcO2  –  CvO2)], the 
same (CcO2 – CaO2), i.e., the same PaO2/FIO2, may 
derive from myriad combinations of venous admix-
ture fraction and (CcO2 – CvO2). These range from 

(2)Venous admixture =

CcO2−CaO2

CcO2−CvO2

.
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extremely high venous admixture fraction and low 
(CcO2 – CvO2), i.e., high CvO2, or vice versa.

3.	 CcO2 primarily depends on FIO2; therefore, for 
a given FIO2 any change of (CcO2  –  CvO2) only 
depends upon the CvO2.

4.	 CvO2, for a given arterial oxygenation, strictly 
depends on oxygen consumption (VO2) and cardiac 
output (Qt); indeed, CvO2 = CaO2 – VO2/Qt.

The consequence of these relationships are summa-
rized in Fig.  1. Figure  1a shows PaO2 as a function of 
FIO2 at venous admixture levels from 10% to 40%, and a 
cardiac output range between 6 and 10 L/min, assuming 
an oxygen consumption of 200 ml/min. Two features are 
worth noting:

• • PaO2 is lower at higher venous admixture levels 
and increases non-linearly with FIO2 along the iso-
venous admixture lines.

• • For a given oxygen consumption and venous admix-
ture level, cardiac output exerts a tremendous effect 
on PaO2. It must be stressed, however, that the pri-
mary determinant is the CvO2 (see point 4 above).

Figure  1b presents the PaO2/FIO2 ratio as a function 
of FIO2 at venous admixture levels between 10% and 
40% over a cardiac output range between 6 L/min (lover 
CvO2) and 10  L/min (higher CvO2). This figure under-
lines the limits of PaO2/FIO2 alone in the assessment of 
lung injury severity. As an example, at venous admix-
ture 20% and 10 L/min of cardiac output, the PaO2/FIO2 
always exceeds 300, i.e., no ARDS. However, for the same 

venous admixture (20%) with a lower cardiac output 
of 6  L/min, a given patient would be classified as “mild 
ARDS” across FIO2 values from 0.3 to 0.7 but classified as 
“no ARDS” at FIO2 values from 0.7 to 1.0. Another hypo-
thetical patient at venous admixture of 30%, depending 
on FIO2 and cardiac output, may oscillate between no 
ARDS, mild ARDS, or moderate-severe ARDS.

Clinical use
Assessment of severity
Although the PaO2/FIO2 ratio has limits as a surrogate 
of venous admixture, the PaO2/FIO2 ratio offers several 
advantages: first, it is easy to measure; second, when 
tested across large populations (but not necessarily in 
individual patients), the PaO2/FIO2 reflects reasonably 
well the severity of anatomical derangements meas-
ured by CT scanning [1]. Nonetheless, the accuracy of 
PaO2/FIO2 ratio for indexing ARDS severity (e.g., Berlin 
ARDS definition) would improve greatly if determined 
at a standard PEEP value. In previous work [10], we used 
5 cmH2O to avoid the masking effect of higher PEEP on 
PaO2/FIO2 ratio, which may be due either to decreasing 
venous admixture or altering hemodynamics. Standardi-
zation of FIO2 would further improve the accuracy and 
comparability of severity among patients [11].

PEEP selection
Changes in PaO2/FIO2 ratio are frequently used to assess 
recruitability during ARDS, on the assumption that 
increases in PaO2/FIO2 ratio are due to lung recruitment 
[12]. Unfortunately, increasing PEEP often decreases car-
diac output. Theoretically, if the venous admixture and 

Fig. 1  PaO2 (a) and PaO2/FIO2 (b) as a function of FIO2 at shunt of 10%, 20%, 30%, and 40%. Values computed at cardiac output 10 L/min (upper 
boundaries) and 6 L/min (lower boundaries), at VO2 200 ml/min, hemoglobin 10 g/dL, and alveolar PCO2 40 mmHg. PaO2 values were derived from 
oxygen content, by using the oxygen dissociation curve equation, proposed by Severinghaus [9]. The arteriovenous oxygen difference was 2 ml/dL 
at 10 L/min of cardiac output and 3.3 ml/dL at 6 L/min of cardiac output. Note that, for a given shunt, the upper boundary would move up and the 
lower boundary would move down if the arteriovenous oxygen difference was lower than 2 ml/dL and greater than 3.3 ml/dL, respectively. Values 
were chosen as proof of the concept
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oxygen consumption do not change, this would reduce 
the PaO2/FIO2 ratio. However, this seldom occurs, as the 
venous admixture usually changes in proportion to the 
cardiac output [12–15]. Therefore, caution must be used 
when setting PEEP with the PaO2/FIO2 approach, as its 
apparent that improvement may be due to decreased car-
diac output in the absence of recruitment—a principle 
long known but often forgotten.

Conclusions
• • PaO2/FIO2 ratio is a surrogate of venous admixture 

measurement for approximating ARDS severity and 
relates well to anatomical differences on the CT scan.

• • At a given venous admixture, the PaO2/FIO2 ratio 
may differ, depending on oxygen consumption and 
cardiac output. Conversely, for the same PaO2/FIO2, 
venous admixture may vary with FIO2.

• • To better assess severity of lung injury and follow its 
evolution, PaO2/FIO2 ratio should be measured at 
standardized levels of PEEP and FIO2. Selecting PEEP 
according to PaO2/FIO2 ratio may be misleading if 
hemodynamics are not taken into account.
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