Skip to main content
Log in

Transcriptional and Biochemical Alterations in Zebrafish Eleuthero-Embryos (Danio rerio) After Exposure to Synthetic Progestogen Dydrogesterone

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Little information has so far been known on the effects of synthetic progestogen dydrogesterone (DDG) in organisms like fish. This study aimed to investigate the effects of DDG on the transcriptional and biochemical alterations in zebrafish eleuthero-embryos. Zebrafish eleuthero-embryos were analyzed for the transcriptional alterations by real-time quantitative PCR (RT-qPCR) and biochemical changes by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FITR) after 144 h exposure to DDG. The results of qPCR analysis showed that DDG exposure significantly suppressed the transcriptions of target genes involved in hypothalamic–pituitary–thyroid (HPT) axis, while it induced the expression of target genes mRNA belonging to hypothalamic–pituitary–gonad (HPG) axis. In addition, ATR-FTIR spectroscopy analysis showed that the biochemical alterations of protein, nucleic acid and lipid were observed following DDG treatment. The finding from this study suggests that DDG exposure could have potential multiple effects in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmadzai AA, Trevisan J, Pang WY et al (2015) Classification of agents using Syrian hamster embryo (SHE) cell transformation assay (CTA) with ATR-FTIR spectroscopy and multivariate analysis. Mutagenesis 30:603–612

    Article  CAS  Google Scholar 

  • Cakmak G, Togan I, Severcan F (2006) 17Beta-estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy: a comparative study with nonylphenol. Aquat Toxicol 77:53–63

    Article  CAS  Google Scholar 

  • Carr JA, Patiño R (2011) The hypothalamus–pituitary–thyroid axis in teleosts and amphibians: endocrine disruption and its consequences to natural populations. Gen Comp Endocrinol 170:299–312

    Article  CAS  Google Scholar 

  • Ceylan C, Tanrikul T, Özgener H (2014) Biophysical evaluation of physiological effects of gilthead sea bream (Sparus aurata) farming using FTIR spectroscopy. Food Chem 145:1055–1060

    Article  CAS  Google Scholar 

  • Chang H, Wu SM, Hu JY et al (2008) Trace analysis of androgens and progestogens in environmental waters by ultra-performance liquid chromatography electrospray tandem mass spectrometry. J Chromatogr A 1195:44–51

    Article  CAS  Google Scholar 

  • Chiamolera MI, Wondisford FE (2009) Minireview: thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology 150:1091–1096

    Article  CAS  Google Scholar 

  • Dietrich JW, Landgrafe G, Fotiadou EH (2012) TSH and thyrotropic agonists: key actors in thyroid homeostasis. J Thyroid Res 351864:1–29

    Article  Google Scholar 

  • Dohán O, Carrasco N (2003) Advances in Na+/I–symporter (NIS) research in the thyroid and beyond. Mol Cell Endocrinol 213:59–70

    Article  Google Scholar 

  • Gajjar K, Ahmadzai AA, Valasoulis G et al (2014) Histology verification demonstrates that biospectroscopy analysis of cervical cytology identifies underlying disease more accurately than conventional screening: removing the confounder of discordance. PLoS ONE 9:e82416

    Article  Google Scholar 

  • German MJ, Hammiche A, Ragavan N et al (2006) Infrared spectroscopy with multivariate analysis potentially facilitates the segregation of different types of prostate cell. Biophys J 90:3783–3795

    Article  CAS  Google Scholar 

  • Gur G, Bonfil D, Safarian H et al (2002) GnRH signaling pathways regulate differentially the tilapia gonadotropin subunit genes. Mol Cell Endocrinol 189:125–134

    Article  CAS  Google Scholar 

  • Lechan RM, Fekete C (2004) Feedback regulation of thyrotropin-releasing hormone (TRH): mechanisms for the non-thyroidal illness syndrome. J Endocrinol invest 27:105–119

    CAS  Google Scholar 

  • Li JY, Ying GG, Jones KC et al (2015) Real-world carbon nanoparticle exposures induce brain and gonadal alterations in zebrafish (Danio rerio) as determined by biospectroscopy techniques. Analyst 140:2687–2695

    Article  CAS  Google Scholar 

  • Liang YQ, Huang GY, Ying GG et al (2015a) Progesterone and norgestrel alter transcriptional expression of genes along the hypothalamic–pituitary–thyroid axis in zebrafish embryos-larvae. Comp Biochem Phys C 167:101–107

    CAS  Google Scholar 

  • Liang YQ, Huang GY, Liu SS et al (2015b) Long-term exposure to environmentally relevant concentrations of progesterone and norgestrel affects sex differentiation in zebrafish (Danio rerio). Aquat Toxicol 160:172–179

    Article  CAS  Google Scholar 

  • Liu S, Ying GG, Zhao JL et al (2011) Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry. J Chromatogr A 1218:1367–1378

    Article  CAS  Google Scholar 

  • Liu S, Ying GG, Zhou LJ et al (2012) Steroids in a typical swine farm and their release into the environment. Water Res 46:3754–3768

    Article  CAS  Google Scholar 

  • Liu SS, Ying GG, Liu YS et al (2014) Analysis of 21 progestagens in various matrices by ultra–high–performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with diverse sample pretreatment. Anal Bioanal Chem 406:7299–7311

    Article  CAS  Google Scholar 

  • Liu SS, Ying GG, Liu YS et al (2015) Occurrence and removal of progestagens in two representative swine farms: effectiveness of lagoon and digester treatment. Water Res 77:146–154

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real–time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lorenz C, Contardo-Jara V, Pflugmacher S et al (2011) The synthetic gestagen levonorgestrel impairs metamorphosis in Xenopus laevis by disruption of the thyroid system. Toxico. Sci 123:94–102

    Article  CAS  Google Scholar 

  • Martin FL, Kelly JG, Llabjani V et al (2010) Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat Protoc 5:1748–1760

    Article  CAS  Google Scholar 

  • Nguyena LK, Kholodenkoa BN (2016) Feedback regulation in cell signalling: Lessons for cancer therapeutics. Semin Cell Dev Biol 50:85–94

    Article  Google Scholar 

  • Noguchi Y, Harii N, Giuliani C et al (2010) Thyroglobulin (Tg) induces thyroid cell growth in a concentration-specific manner by a mechanism other than thyrotropin/cAMP stimulation. Biochem Biophys Res Commun 391:890–894

    Article  CAS  Google Scholar 

  • Palaniappan PLRM, Pramod KS (2010) FTIR study of the effect of nTiO2 on the biochemical constituents of gill tissues of Zebrafish (Danio rerio). Food Chem Toxicol 48:2337–2343

    Article  CAS  Google Scholar 

  • Pawson AJ, McNeilly AS (2005) The pituitary effects of GnRH. Anim Reprod Sci 88:75–94

    Article  CAS  Google Scholar 

  • Rižner TL, Brožič P, Doucette C et al (2011) Selectivity and potency of the retroprogesterone dydrogesterone in vitro. Steroids 76: 607–615.

    Article  Google Scholar 

  • Runnalls TJ, Beresford N, Losty E et al (2013) Several synthetic progestins with different potencies adversely affect reproduction of fish. Environ Sci Technol 47:2077–2084

    Article  CAS  Google Scholar 

  • Sanderson JT (2006) The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci 94:3–21

    Article  CAS  Google Scholar 

  • Trevisan J, Angelov PP, Patel II et al (2010) Syrian hamster embryo (SHE) assay (pH 6.7) coupled with infrared spectroscopy and chemometrics towards toxicological assessment. Analyst 135:3266–3272

    Article  CAS  Google Scholar 

  • Trevisan J, Angelov PP, Scott AD et al (2013) IRootLab: a free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis. Bioinformatics 29:1095–1097

    Article  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real–time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–0034.11

    Article  Google Scholar 

  • Yan W, Zhou YX, Yang J et al (2012) Waterborne exposure to microcystin-LR alters thyroid hormone levels and gene transcription in the hypothalamic–pituitary–thyroid axis in zebrafish larvae. Chemosphere 87:1301–1307

    Article  CAS  Google Scholar 

  • Zhao YB, Castiglioni S, Fent K (2015) Synthetic progestins medroxyprogesterone acetate and dydrogesterone and their binarymixtures adversely affect reproduction and lead to histological and transcriptional alterations in zebrafish (Danio rerio). Environ Sci Technol 49:4636–4645

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (41273119, and U1401235), National Water Pollution Control Program (2014ZX07206-005) and GIG CAS (IS-2348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Guo Ying.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, WJ., Ying, GG., Huang, GY. et al. Transcriptional and Biochemical Alterations in Zebrafish Eleuthero-Embryos (Danio rerio) After Exposure to Synthetic Progestogen Dydrogesterone. Bull Environ Contam Toxicol 99, 39–45 (2017). https://doi.org/10.1007/s00128-017-2046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-017-2046-1

Keywords

Navigation