Skip to main content

Advertisement

Log in

Assessment of Heavy Metals Contamination in Reclaimed Mine Soil and their Accumulation and Distribution in Eucalyptus Hybrid

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The metal contamination in reclaimed mine soil (RMS) of Jharia coal field, Dhanbad (India) using various contamination indices and their accumulation in tissues of Eucalyptus hybrid were assessed. In RMS, metal concentrations were found higher (202%–533%) than control soil (CS) with major contribution of Co and Mn followed by Zn, Cu and Pb. Principal component analysis (PCA) of metals present in RMS was carried out to assess their origin in RMS. The contamination factor (CF) values in RMS indicated moderate to very high level of pollution (ranged between 2.02 and 5.33). Higher accumulation of Pb in barks (three times), Zn in leaves (4.5 times), Mn in leaves (19 times), and Cu in roots (1.4 times) was found in trees growing on RMS than CS. The study concluded that different tree tissues accumulate varied concentration of heavy metals in RMS and thus for biomonitoring of metals, specific tissues has to be selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136(1–3):227–238

    CAS  Google Scholar 

  • Alloway BJ (1990) Heavy metals in soils. Wiley, New York, pp 339

    Google Scholar 

  • Bhuiyan MA, Parvez L, Islam MA, Dampare SB, Suzuki S (2010) Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater 173(1):384–392

    Article  CAS  Google Scholar 

  • Borůvka L, Vacek O, Jehlička J (2005) Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 128(3):289–300

    Article  Google Scholar 

  • Cai L, Xu Z, Bao P, He M, Dou L, Chen L, Zhu YG (2015) Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. J Geochem Explor 148:189–195

    Article  CAS  Google Scholar 

  • Chai Y, Guo J, Chai S, Cai J, Xue L, Zhang Q (2015) Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng–Songyuan area, Jilin Province, Northeast China. Chemosphere 134:67–75

    Article  CAS  Google Scholar 

  • Chowdhury A, Maiti SK (2016) Identification of metal tolerant plant species in mangrove ecosystem by using community study and multivariate analysis: a case study from Indian Sunderban. Environ Earth Sci 75(9):1–21

    Article  CAS  Google Scholar 

  • Dang Z, Liu C, Haigh MJ (2002) Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ Pollut 118(3):419–426

    Article  CAS  Google Scholar 

  • Donahue RL, Miller RW, Shickluna JC (1999) Soils—an introduction to soils and plant growth. PHI, New Delhi, pp 148–149

    Google Scholar 

  • Fernández-Caliani JC, Barba-Brioso C, González I, Galán E (2009) Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Poll 200(1–4):211–226

    Article  Google Scholar 

  • Field A (2000) Discovering statistics using SPSS for windows. Sage Publications, London

    Google Scholar 

  • García-Salgado S, García-Casillas D, Quijano-Nieto MA, Bonilla-Simón MM (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut 223(2):559–572

    Article  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20(4):2150–2161

    Article  CAS  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14(8):975–1001

    Article  Google Scholar 

  • Hewitt EJ, Smith TA (1975) Plant mineral nutrition. English Universities Press, London

    Google Scholar 

  • Jamshidi-Zanjani A, Saeedi M (2013) Metal pollution assessment and multivariate analysis in sediment of Anzali international wetland. Environ Earth Sci 70(4):1791–1808

    Article  CAS  Google Scholar 

  • Karamanos RE, Bettany JR, Stewart JWB (1976) The uptake of native and applied lead by Alfalfa and Bromegrass from soil. Can J Soil Sci 56:485–494

    Article  Google Scholar 

  • Kostarelos K, Gavriel I, Stylianou M, Zissimos AM, Morisseau E, Dermatas D (2015) Legacy soil contamination at abandoned mine sites: making a case for guidance on soil protection. Bull Environ Contam Toxicol 94(3):269–274

    Article  CAS  Google Scholar 

  • Kumar A, Maiti SK (2014) Translocation and bioaccumulation of metals inOryza sativa and Zea mays growing in chromite-asbestos contaminated agricultural fields, Jharkhand, India. Bull Environ Contam Toxicol 93(4):434–441

    Article  CAS  Google Scholar 

  • Kumar A, Maiti SK (2015) Assessment of potentially toxic heavy metal contamination in agricultural fields, sediment, and water from an abandoned chromite-asbestos mine waste of Roro hill, Chaibasa, India. Environ Earth Sci 74(3):2617–2633

    Article  CAS  Google Scholar 

  • Kumar A, Maiti SK, Prasad MNV, Singh RS (2015) Grasses and legumes facilitate phytoremediation of metalliferous soils in the vicinity of an abandoned chromite–asbestos mine. J Soils Sediments. doi:10.1007/s11368-015-1323-z

    Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51(342):71–79

    Article  CAS  Google Scholar 

  • Li MS, Luo YP, Su ZY (2007) Heavy metal concentrations in soils and plant accumulation in a restored manganese mine land in Guangxi, South China. Environ Pollut 147(1):168–175

    Article  CAS  Google Scholar 

  • Machender G, Dhakate R, Rao GT, Loukya G, Reddy MN (2013) Assessment of trace element contamination in soils around Chinnaeru River Basin, Nalgonda District, India. Environ Earth Sci 70(3):1021–1037

    Article  CAS  Google Scholar 

  • Maiti SK (2007) Bioreclamation of coalmine overburden dumps—with special emphasis on micronutrients and heavy metals accumulation in tree species. Environ Monit Assess 125(1–3):111–122

    Article  CAS  Google Scholar 

  • Maiti SK (2012) Ecorestoration of the coal mine degraded lands. Springer, New York

    Google Scholar 

  • Maiti SK, Nandhini S (2006) Bioavailability of metals in fly ash and their bioaccumulation in naturally occurring vegetation: a pilot scale study. Environ Monit Assess 116(1–3):263–273

    Article  CAS  Google Scholar 

  • Maiti SK, Kumar A, Ahirwal J (2016) Bioaccumulation of metals in timber and edible fruit trees growing on reclaimed coal mine overburden dumps. Int J Min Reclam Environ 30(3):231–244

    Article  CAS  Google Scholar 

  • Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300(1):229–243

    Article  CAS  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, New York

    Google Scholar 

  • Mukhopadhyay S, Maiti SK (2011) Trace metal accumulation and natural mycorrhizal colonisation in an afforested coalmine overburden dump: a case study from India. Int J Min Reclamat Environ 25(2):187–207

    Article  CAS  Google Scholar 

  • Nikolaidis C, Zafiriadis I, Mathioudakis V, Constantinidis T (2010) Heavy metal pollution associated with an abandoned lead–zinc mine in the Kirki Region, NE Greece. Bull Environ Contam Toxicol 85(3):307–312

    Article  CAS  Google Scholar 

  • Pais I, Jones JB Jr (1997) The handbook of trace elements. CRC Press, Boca Raton

    Google Scholar 

  • Pandey B, Agrawal M, Singh S (2014) Assessment of air pollution around coal mining area: emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmos Pollut Res 5(1):79–86

    Article  Google Scholar 

  • Pérez-Cruzado C, Merino A, Rodríguez-Soalleiro R (2011) A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens grown as short rotation woody crops in north-west Spain. Biomass Bioenergy 35(7):2839–2851

    Article  Google Scholar 

  • Pietrzykowski M, Socha J, van Doorn NS (2014) Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Sci Total Environ 470:501–510

    Article  Google Scholar 

  • Prachiti PK, Manikyamba C, Singh PK, Balaram V, Lakshminarayana G, Raju K, Arora M (2011) Geochemical systematics and precious metal content of the sedimentary horizons of Lower Gondwanas from the Sattupalli coal field, Godavari Valley, India. Int J Coal Geol 88(2):83–100

    Article  CAS  Google Scholar 

  • Rana V, Maiti SK, Jagadevan S (2016) Ecological risk assessment of metals contamination in the sediments of natural urban wetlands in dry tropical climate. Bull Environ Contam Toxicol 97(3):407–412

    Article  CAS  Google Scholar 

  • Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K (2011) Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut 159(12):3560–3570

    Article  CAS  Google Scholar 

  • Shan Y, Tysklind M, Hao F, Ouyang W, Chen S, Lin C (2013) Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. J Soils Sediments 13(4):720–729

    Article  CAS  Google Scholar 

  • Singh AK, Mahato MK, Neogi B, Mondal GC, Singh TB (2011) Hydrogeochemistry, elemental flux, and quality assessment of mine water in the Pootkee-Balihari mining area, Jharia coalfield, India. Mine Water Environ 30(3):197–207

    Article  CAS  Google Scholar 

  • Tjell JC, Hovmand MF, Mosbaek H (1979) Atmospheric lead pollution of grass grown in a background area in Denmark. Nature 280:425–426

    Article  CAS  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresun 33(1–4):566–575

    Article  Google Scholar 

  • Vaezi AR, Karbassi AR, Valavi S, Ganjali MR (2015) Ecological risk assessment of metals contamination in the sediment of the Bamdezh wetland, Iran. Int J Environ Sci Technol 12(3):951–958

    Article  CAS  Google Scholar 

  • Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364

    Article  CAS  Google Scholar 

  • Vogel-Mikuš K, Drobne D, Regvar, M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133(2):233–242

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  • Zhang Y, Feng Q, Meng Q, Lu P, Meng L (2012) Distribution and bioavailability of metals in subsidence land in a coal mine China. Bull Environ Contam Toxicol 89(6):1225–1230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to the reviewers for their valuable comments and suggestions for enhancing the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Kumar Maiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, S.K., Rana, V. Assessment of Heavy Metals Contamination in Reclaimed Mine Soil and their Accumulation and Distribution in Eucalyptus Hybrid. Bull Environ Contam Toxicol 98, 97–104 (2017). https://doi.org/10.1007/s00128-016-1966-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1966-5

Keywords

Navigation