Skip to main content
Log in

Ecological Risk Assessment of Metals Contamination in the Sediments of Natural Urban Wetlands in Dry Tropical Climate

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The pollution load due to metal contamination in the sediments of urban wetlands (Dhanbad, India) due to illegal release of domestic and industrial wastewater was studied by using various geochemical indices, such as contamination factor (Cf), degree of contamination (Cd), modified degree of contamination (mCd), pollution load index (PLI) and geoaccumulation index (Igeo) for Cu, Co, Cd, Cr and Mn. Cluster analysis (CA) and Principal component analysis (PCA) of metals present in wetland sediments were carried out to assess their origin and relationship with each other. The Cf values for different metals in the wetlands under investigation indicated low to very high level of pollution (Cf ranged between 0.02 and 14.15) with highest Cf (14.15) for Cd. The wetland receiving both domestic and industrial wastewater had the highest values of Cd, mCd and PLI as 17.48, 3.49 and 1.03 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Khalek A (2015) Risk assessment, bioaccumulation of metals and histopathological alterations in Nile tilapia (Oreochromis niloticus) facing degraded aquatic conditions. Bull Environ Contam Toxicol 94(1):77–83

    Article  CAS  Google Scholar 

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136(1–3):227–238

    CAS  Google Scholar 

  • Boyer T, Polasky S (2004) Valuing urban wetlands: a review of non-market valuation studies. Wetlands 24(4):744–755

    Article  Google Scholar 

  • Çevik F, Göksu MZL, Derici OB, Fındık Ö (2009) An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environ Monit Assess 152(1–4):309–317

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14(8):975–1001

    Article  Google Scholar 

  • Jackson ML (1973) Soil chemical analysis. PHI, India, pp 111–133

    Google Scholar 

  • Kumar A, Maiti SK (2014) Translocation and bioaccumulation of metals in Oryza sativa and Zea mays growing in chromite-asbestos contaminated agricultural fields, Jharkhand. India Bull Environ Contam Toxicol 93(4):434–441

    Article  CAS  Google Scholar 

  • Kumar A, Maiti SK (2015) Assessment of potentially toxic heavy metal contamination in agricultural fields, sediment, and water from an abandoned chromite-asbestos mine waste of Roro hill, Chaibasa. India Environ Earth Sci 74(3):2617–2633

    Article  CAS  Google Scholar 

  • Kumari M, Tripathi BD (2015) Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicol Environ Saf 112:80–86

    Article  CAS  Google Scholar 

  • Machender G, Dhakate R, Rao GT, Loukya G, Reddy MN (2013) Assessment of trace element contamination in soils around Chinnaeru River Basin, Nalgonda District. India Environ Earth Sci 70(3):1021–1037

    Article  CAS  Google Scholar 

  • Maiti SK, Nandhini S (2006) Bioavailability of metals in fly ash and their bioaccumulation in naturally occurring vegetation: a pilot scale study. Environ Monit Assess 116(1–3):263–273

    Article  CAS  Google Scholar 

  • Naccari C, Cicero N, Ferrantelli V, Giangrosso G, Vella A, Macaluso A, Dugo G (2015) Toxic metals in pelagic, benthic and demersal fish species from Mediterranean FAO zone 37. Bull Environ Contam Toxicol 95(5):567–573

    Article  CAS  Google Scholar 

  • Niu Y, Niu Y, Pang Y, Yu H (2015) Assessment of Heavy Metal Pollution in Sediments of Inflow Rivers to Lake Taihu. China. Bull Environ Contam Toxicol 95(5):618–623

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE, Page AL (1982) Phosphorus. In: Pages AL (ed) Methods of soil analysis, Part 2. Agron Monogr 9, 2nd edn. ASA and SSSA, Madison, pp 403–430

    Google Scholar 

  • Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47(2):74

    Article  Google Scholar 

  • Sakizadeh M, Mirzaei R, Ghorbani H (2015) The Extent and Prediction of Heavy Metal Pollution in Soils of Shahrood and Damghan. Iran Bull Environ Contam Toxicol 95(6):770–776

    Article  CAS  Google Scholar 

  • Salomons W, Förstner U (2012) Metals in the hydrocycle. Springer, Berlin

    Google Scholar 

  • Shrivastava R, Upreti RK, Seth PK, Chaturvedi UC (2002) Effects of chromium on the immune system. FEMS Immunol Med Microbiol 34(1):1–7

    Article  CAS  Google Scholar 

  • Subbiah BV, Asija GL (1956) A rapid procedure for the estimation of available nitrogen in soils. Curr Sci 25(8):259–260

    CAS  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol Meeresunlters 33:566–575

    Article  Google Scholar 

  • Vaezi AR, Karbassi AR, Valavi S, Ganjali MR (2015) Ecological risk assessment of metals contamination in the sediment of the Bamdezh wetland. Iran Int J Environ Sci Technol 12(3):951–958

    Article  CAS  Google Scholar 

  • Vukićević T (2012) Toxic effects of cadmium. Acta Med Medianae 51(4):65–70

    Google Scholar 

  • Wali A, Kawachi A, Bougi MSM, Dhia HB, Isoda H, Tsujimura M, Ksibi M (2015) Effects of metal pollution on sediments in a highly saline aquatic ecosystem: case of the Moknine Continental Sebkha (Eastern Tunisia). Bull Environ Contam Toxicol 94(4):511–518

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Indian School of Mines, Dhanbad for providing institute fellowship to one of the author, Mr. Vivek Rana (Registration No. 2014DR0276) under ISM/JRF scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Kumar Maiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, V., Maiti, S.K. & Jagadevan, S. Ecological Risk Assessment of Metals Contamination in the Sediments of Natural Urban Wetlands in Dry Tropical Climate. Bull Environ Contam Toxicol 97, 407–412 (2016). https://doi.org/10.1007/s00128-016-1885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1885-5

Keywords

Navigation