Skip to main content

Advertisement

Log in

Mineralogy and geochemistry of silicate, sulfide, and oxide iron formations in Norway: evidence for fluctuating redox states of early Paleozoic marine basins

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Laterally extensive silicate and sulfide iron formation associated with jasper (hematitic chert) beds and volcanogenic massive sulfide (VMS) deposits in Norway provide evidence of early mineral assemblages and redox conditions within coeval early Paleozoic seawater. Calculated detrital-free compositions record mixed hydrothermal (e.g., Fe, Cu) and seawater ± biogenic (e.g., Si, Ni, S, REE, P) components. Rare earth element (REE) patterns are characterized by small to large negative Ce anomalies and insignificant to locally large positive Eu anomalies, reflecting seawater REE carried to the seafloor by Fe–P-rich particles later modified by diagenetic processes. Protoliths of silicate iron formation precipitated in anoxic and intermittently euxinic deep waters by the diagenetic modification of amorphous Si–Fe oxyhydroxides and/or Si–Fe–OOH gels, based on possible modern analogues in the Red Sea. Diagenetic minerals include nontronite, greenalite, stilpnomelane, magnetite, manganosiderite, apatite, and iron sulfides. In sulfide iron formation, a local predominance of pyrrhotite over pyrite records highly reducing conditions caused by organic material. The geochemical data provide evidence for Mn–Fe–P shuttle and redox processes in a stratified basin with oxic or suboxic shallow waters and silica concentrations much higher than those of modern seawater. Hydrothermal plume-derived Fe present within the anoxic layer and near the chemocline formed mixed-valence oxyhydroxides and silicates and, intermittently, sulfides by reaction with aqueous Si and H2S, respectively, the latter derived from bacterial reduction of seawater sulfate at the chemocline. Major sustained fluxes of hydrothermally derived reductants (Fe2+, Mn2+, H2S, H2) produced from large seafloor systems such as Løkken may have changed the redox state of seawater in local, and possibly regional, basins from weakly or moderately oxic to intermittently anoxic or euxinic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Algeo TJ, Maynard JB (2008) Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments. Geosphere 4:872–887

    Article  Google Scholar 

  • Algeo TJ, Rowe H (2012) Paleoceanographic applications of trace-metal concentration data. Chem Geol 324–325:6–18

    Article  Google Scholar 

  • Alibo DS, Nozaki Y (1999) Rare earth elements in seawater—particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta 63:363–372

    Article  Google Scholar 

  • Anschutz P, Blanc G (1995) Diagenetic evolution of the DOP facies from the Atlantis II Deep (Red Sea): evidence of early hydrothermal activity. Oceanol Acta 18:105–112

  • Badaut D, Besson G, Decarreau A, Rautureau R (1985) Occurrence of a ferrous, trioctahedral smectite in recent sediments of Atlantis II Deep, Red Sea. Clay Miner 20:389–404

  • Badaut D, Decarreau A, Besson G (1992) Ferripyrophyllite and related Fe3+-rich 2:1 clays in recent deposits of Atlantis II Deep, Red Sea. Clay Miner 27:227–244

  • Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid–rock interaction and the significance of the oxidation state of europium. Chem Geol 93:219–230

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res 79:37–55

    Article  Google Scholar 

  • Bekker A, Slack JF, Planavsky N, Krapež B, Hofmann A, Konhauser KO, Rouxel OJ (2010) Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol 105:467–508

    Article  Google Scholar 

  • Bischoff JL (1969) Red Sea geothermal brine deposits: their mineralogy, chemistry, and genesis. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer-Verlag, New York, pp 368–401

    Chapter  Google Scholar 

  • Borg S, Liu W, Etschmann B, Tian Y, Brugger J (2012) An XAS study of molybdenum speciation in hydrothermal chloride solutions from 25–385°C and 600 bar. Geochim Cosmochim Acta 92:292–307

    Article  Google Scholar 

  • Brookins DG (1989) Aqueous geochemistry of rare earth elements. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Rev Miner 21:201–223

  • Carstens CW (1919) Oversigt over Trondhjemsfeltets bergbygning [Overview of the geology of the Trondheim region]. Det Kongelige Norske Videnskabers Selskabs Skrifter No 1, 152 pp

  • Carstens H (1955) Jernmalmene i det vestlige Trondhjemsfelt og forholdet til kisforekomstene [Iron ores of the western Trondheim region and their relationship to the sulphide deposits]. Nor Geol Tidsskr 35:211–220

    Google Scholar 

  • Chappaz A, Lyons TW, Gregory DD, Reinhard CT, Gill BC, Li C, Large RR (2014) Does pyrite act as an important host for molybdenum in modern and ancient euxinic sediments? Geochim Cosmochim Acta 126:112–122

    Article  Google Scholar 

  • Cocherie A, Calvez JY, Oudin-Dunlop E (1994) Hydrothermal activity as recorded by Red Sea sediments: Sr–Nd isotopes and REE signatures. Mar Geol 118:291–302

    Article  Google Scholar 

  • Corliss JB, Lyle M, Dymond J, Crane K (1978) The chemistry of hydrothermal mounds near the Galapagos Rift. Earth Planet Sci Lett 40:12–24

  • D’Arcy J, Gilleaudeau GJ, Peralta S, Gaucher C, Frei R (2017) Redox fluctuations in the Early Ordovician oceans: an insight from chromium stable isotopes. Chem Geol 448:1–12

  • Dekov VM, Kamenov GD, Stummeyer J, Thiry M, Savelli C, Shanks WC, Danielle D, Kuzmann E, Vértes A (2007) Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea). Chem Geol 245:103–119

  • Dellwig O, Leipe T, März C, Glockzin M, Pollehne F, Schnetger B, Yakushev EV, Böttcher ME, Brumsack H-J (2010) A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins. Geochim Cosmochim Acta 74:7100–7115

    Article  Google Scholar 

  • Douville E, Bienvenu P, Charlou JL, Donval JP, Fouquet Y, Appriou P, Gamo T (1999) Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim Cosmochim Acta 63:627–643

    Article  Google Scholar 

  • Edmonds HN, German CR (2004) Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge. Geochim Cosmochim Acta 68:759–772

  • Færseth RB, Solli A (1982) Bedrock map Husnes 1214–4. Geological Survey of Norway, scale 1:50,000

  • Færseth RB, Andersen TB, Nielsen PE, Nordås J, Ragnhildstveit J (1999) Bedrock map Fitjar 1114-1. Geological Survey of Norway, scale 1:50,000

  • Feely RA, Massoth GJ, Trefry JH, Baker ET, Paulson AJ, Lebon GT (1994) Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca Ridge. J Geophys Res 99(B3):4985–5006

  • Fitzsimmons JN, John SG, Marsay CM, Hoffman CL, Nicholas SL, Toner BM, German CR, Sherrell RM (2017) Iron persistence in a distal hydrothermal plume supported by dissolved-particle exchange. Nat Geosci 10:195–203

    Article  Google Scholar 

  • Foslie S (1926) Norges svovelkisforekomster [Norway’s pyrite deposits]. Nor Geol Unders 127:1–122

    Google Scholar 

  • Fralick PW, Barrett TJ, Jarvis KE, Jarvis I, Schnieders BR, vande Kemp R (1989) Sulfide-facies iron formation at the Morley occurrence, northwestern Ontario: contrasts with oceanic hydrothermal deposits. Can Mineral 27:601–616

    Google Scholar 

  • German CR, Klinkhammer GP, Edmond JM, Mura A, Elderfield H (1990) Hydrothermal scavenging of rare-earth elements in the ocean. Nature 345:516–518

    Article  Google Scholar 

  • German CR, Von Damm KL (2003) Hydrothermal processes. In: Elderfield H (ed) The oceans and marine geochemistry. Elsevier, Amsterdam. Treatise on Geochemistry 6:181–222

  • Gole MJ (1980a) Low-temperature retrograde minerals in metamorphosed Archean banded iron-formations, Western Australia. Can Mineral 18:205–214

    Google Scholar 

  • Gole MJ (1980b) Mineralogy and petrology of very-low-metamorphic grade Archaean banded iron-formations, Weld Range, Western Australia. Am Mineral 65:8–25

  • Grenne T (1986) Ophiolite-hosted Cu–Zn deposits at Løkken and Høydal, Trondheim nappe complex, upper allochthon. In: Stephens MB (ed) Stratabound sulphides in the central Scandinavian Caledonides. 7th IAGOD symposium, excursion guide no 2, Uppsala, Sveriges geologiska undersökning Ca 60:55–68

  • Grenne T (1989a) Magmatic evolution of the Løkken SSZ ophiolite, Norwegian Caledonides: relationships between anomalous lavas and high-level intrusions. Geol J 24:251–274

    Article  Google Scholar 

  • Grenne T (1989b) The feeder zone to the Løkken ophiolite-hosted massive sulfide deposit and related mineralizations in the central Norwegian Caledonides. Econ Geol 84:2173–2195

    Article  Google Scholar 

  • Grenne T, Slack JF (2003a) Bedded jaspers of the Ordovician Løkken ophiolite, Norway: seafloor deposition and diagenetic maturation of hydrothermal plume-derived silica-iron gels. Mineral Deposita 38:625–639

    Article  Google Scholar 

  • Grenne T, Slack JF (2003b) Paleozoic and Mesozoic silica-rich seawater: evidence from hematitic chert (jasper) deposits. Geology 31:319–322

    Article  Google Scholar 

  • Grenne T, Slack JF (2005) Geochemistry of jasper beds from the Ordovician Løkken ophiolite, Norway: origin of proximal and distal siliceous exhalites. Econ Geol 100:1511–1527

    Article  Google Scholar 

  • Grenne T, Vokes FM (1990) Sea-floor sulfides at the Høydal volcanogenic deposit, central Norwegian Caledonides. Econ Geol 85:344–359

    Article  Google Scholar 

  • Grenne T, Grammeltvedt G, Vokes FM (1980) Cyprus-type sulphide deposits in the western Trondheim district, central Norwegian Caledonides. In: Panayiotou A (ed) Proceedings of the International Ophiolite Symposium, Nicosia, Cyprus, 1979. Cyprus Ministry of Agriculture and Natural Resources, Geological Survey Department, pp 727–743

  • Grenne T, Ihlen PM, Vokes FM (1999) Scandinavian Caledonide metallogeny in a plate-tectonic perspective. Mineral Deposita 34:422–471

    Article  Google Scholar 

  • Gross GA (1995) Iron formations. In: Eckstrand OR, Sinclair WD, Thorpe, RI (eds) Geology of Canadian mineral deposit types. Geol Surv Can Geol Can Ser 8:41–80

  • Hannington MD (2014) Volcanogenic massive sulfide deposits. In: Scott SD (ed) Geochemistry of mineral deposits. Elsevier, Amsterdam, Treatise on Geochemistry (2nd Ed), 13, pp 463–488

  • Hannington MD, Jonasson IR, Herzig PM, Petersen S (1995) Physical and chemical processes of seafloor mineralization at mid-ocean ridges. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. Am Geophys Union, Washington, D.C., Geophys Monogr 91:115–157

  • Hannington MD, de Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th Anniversary Volume, 1905-2005. Society of Economic Geologists, Littleton, Colo, pp 111–141

  • Harder H (1978) Synthesis of iron layer silicate minerals under natural conditions. Clays Clay Miner 26:65–72

    Article  Google Scholar 

  • Hardisty DS, Riedinger N, Planavsky NJ, Asael D, Andrén T, Jørgensen BB, Lyons TW (2016) A Holocene history of dynamic water column redox conditions in the Landsort Deep, Baltic Sea. Am J Sci 316:713–745

  • Häusler K, Dellwig O, Schnetger B, Feldens P, Leipe T, Moros M, Pollehne F, Schönke M, Wegwerth A, Arz HW (2018) Massive Mn carbonate formation in the Landsort Deep (Baltic Sea): hydrographic conditions, temporal succession, and Mn budget calculations. Mar Geol 395:260–270

  • Hein JR, O’Neil JR, Jones MG (1979) Origin of authigenic carbonates in sediment from the deep Bering Sea. Sedimentol 26:681–705

    Article  Google Scholar 

  • Holser WT (1997) Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeogr Palaeoclimatol Palaeoecol 132:309–323

    Article  Google Scholar 

  • Horstmann UE, Hälbich IW (1995) Chemical composition of banded iron-formations of the Griqualand West Sequence, northern Cape Province, South Africa, in comparison with other Precambrian iron formations. Precambrian Res 72:109–145

  • Huston DL, Logan GA (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Planet Sci Lett 220:41–55

    Article  Google Scholar 

  • Jilbert T, Slomp CP (2013) Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea. Geochim Cosmochim Acta 107:155–169

    Article  Google Scholar 

  • Kato Y, Yamaguchi KE, Ohmoto H (2006) Rare earth elements in Precambrian banded iron formations: secular changes of Ce and Eu anomalies and evolution of atmospheric oxygen. In: Kesler SE, Ohmoto H (eds) Evolution of early Earth’s atmosphere, hydrosphere, and biosphere—constraints from ore deposits. Geol Soc Amer Mem 198:269–289

  • Katz B, Elmore RD, Cogoini M, Engel MH, Ferry S (2000) Associations between burial diagenesis of smectite, chemical remagnetization, and magnetite authigenesis in the Vocontian trough, SE France. J Geophys Res 105(B1):851–868

    Article  Google Scholar 

  • Kawasumi S, Chiba H (2017) Redox state of seafloor hydrothermal fluids and its effect on sulfide mineralization. Chem Geol 451:25–37

    Article  Google Scholar 

  • Kidder DL, Krishnaswami R, Mapes RH (2003) Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis. Chem Geol 198:335–353

    Article  Google Scholar 

  • Klein C Jr (1974) Greenalite, stilpnomelane, minnesotaite, crocidolite and carbonates in a very low-grade metamorphic Precambrian iron-formation. Can Mineral 12:475–498

    Google Scholar 

  • Kloprogge JT, Komarneni S, Amonette JE (1999) Synthesis of smectite clay minerals: a critical review. Clays Clay Miner 47:529–554

    Article  Google Scholar 

  • Kump LR, Seyfried WE (2005) Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet Sci Lett 235 (3-4):654–662

    Article  Google Scholar 

  • Laurila TE, Hannington MD, Petersen S, Garbe-Schönberg D (2014a) Early depositional history of metalliferous sediments in the Atlantis II Deep of the Red Sea: evidence from rare earth element geochemistry. Geochim Cosmochim Acta 126:146–168

  • Laurila TE, Hannington MD, Petersen S, Garbe-Schönberg D (2014b) Trace metal distribution in the Atlantis II Deep (Red Sea) sediments. Chem Geol 386:80–100

  • Laurila TE, Hannington MD, Leybourne M, Petersen S, Devey CW, Garbe-Schönberg D (2015) New insights into the mineralogy of the Atlantis II Deep metalliferous sediments, Red Sea. Geochem Geophys Geosyst 16:4449–4478. https://doi.org/10.1002/2015GC006010

  • Li Y-H (1991) Distribution patterns of the elements in the ocean: a synthesis. Geochim Cosmochim Acta 55:3223–3240

    Article  Google Scholar 

  • Li Y-L, Konhauser KO, Zhai M (2017) The formation of magnetite in the early Archean oceans. Earth Planet Sci Lett 466:103–114

    Article  Google Scholar 

  • Lyons TW (1997) Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea. Geochim Cosmochim Acta 61:3367–3382

    Article  Google Scholar 

  • Lyons TW, Luepke JL, Schreiber ME, Zieg GA (2000) Sulfur geochemical constraints on Mesoproterozoic restricted marine deposition: lower Belt Supergroup, northwestern United States. Geochim Cosmochim Acta 64:427–437

  • MacRae ND, Nesbitt HW, Kronberg BI (1992) Development of a positive Eu anomaly during diagenesis. Earth Planet Sci Lett 109:585–591

    Article  Google Scholar 

  • März C, Poulton SW, Beckmann B, Küster K, Wagner T, Kasten S (2008) Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochim Cosmochim Acta 72:3703–3717

    Article  Google Scholar 

  • Maslennikov VV, Maslennikova SP, Large RR, Danyushevsky LV, Herrington RJ, Ayupova NR, Zaykov VV, Lein AY, Tseluyko AS, Melekestseva IY, Tessalina SG (2017) Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geol Rev 85:64–106

    Article  Google Scholar 

  • Mücke A, Annor A, Neumann U (1996) The Algoma-type iron-formations of the Nigerian metavolcano-sedimentary schist belts. Mineral Deposita 31:113–122

    Article  Google Scholar 

  • Murnane R, Clague DA (1983) Nontronite from a low-temperature hydrothermal system on the Juan de Fuca Ridge. Earth Planet Sci Lett 65:343–352

  • Nordås J, Amaliksen KG, Brekke H, Suthren RJ, Furnes H, Sturt BA, Robins B (1985) Lithostratigraphy and petrochemistry of Caledonian rocks on Bømlo, southwest Norway. In: Gee DG, Sturt BA (eds) The Caledonide orogen—Scandinavia and related areas. Wiley, Chichester, pp 679–692

    Google Scholar 

  • Nothdurft LD, Webb GE, Kamber BS (2004) Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochim Cosmochim Acta 68:263–283

  • Oftedahl C (1958) A theory of exhalative-sedimentary ores. Geol Fören Stockh Förh 81:139–144

    Article  Google Scholar 

  • Peter JM (2003) Ancient iron formations: their genesis and use in the exploration for stratiform base metal sulphide deposits, with examples from the Bathurst mining camp. In: Lentz DR (ed) Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral deposit-forming environments. Geol Assoc Can GeoText 4:145–176

  • Peter JM, Goodfellow WD, Doherty W (2003) Hydrothermal sedimentary rocks of the Heath Steele belt, Bathurst mining camp, New Brunswick: Part 2. Bulk and rare earth element geochemistry and implications for origin. In: Goodfellow WD et al. (eds) Massive sulfide deposits of the Bathurst mining camp, New Brunswick, and northern Maine. Econ Geol Monogr 11:391–415

  • Planavsky N, Bekker A, Rouxel OJ, Kamber B, Hofmann A, Knudsen A, Lyons TW (2010) Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition. Geochim Cosmochim Acta 74:6387–6405

    Article  Google Scholar 

  • Poulton SW, Canfield DE (2011) Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7:107–112

    Article  Google Scholar 

  • Ramboz C, Oudin E, Thisse Y (1988) Geyser-type discharge in Atlantis II Deep, Red Sea: evidence of boiling from fluid inclusions in epigenetic anhydrite. Can Mineral 26:765–786

  • Reinhard CT, Planavsky NJ, Wang X, Fischer WW, Johnson TM, Lyons TW (2014) The isotopic composition of authigenic chromium in anoxic marine sediments: a case study from the Cariaco Basin. Earth Planet Sci Lett 407:9–18

    Article  Google Scholar 

  • Robinson DJ (1984) Silicate facies iron formation and strata-bound alteration: tuffaceous exhalites derived by mixing—evidence from Mn garnet-stilpnomelane rocks at Redstone, Timmins, Ontario. Econ Geol 79:1796–1817

    Article  Google Scholar 

  • Sand K (1986) A study of Paleozoic iron formations in the central Norwegian Caledonides. Norges Tekniske Høgskole, Trondheim, Geol Inst Rept 23b, 23 pp [in English and Norwegian]

  • Scott C, Slack JF, Kelley KD (2017) The hyper-enrichment of V and Zn in black shales of the Late Devonian–Early Mississippian Bakken Formation (USA). Chem Geol 452:24–33

  • Severmann S, Mills RA, Palmer MR, Fallick AE (2004) The origin of clay minerals in active and relict hydrothermal deposits. Geochim Cosmochim Acta 68:73–88

    Article  Google Scholar 

  • Shanks WC III (2001) Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev Mineral 43:469–525

    Article  Google Scholar 

  • Shanks WC III, Bischoff JL (1980) Geochemistry, sulfur isotope composition, and accumulation rates of Red Sea geothermal deposits. Econ Geol 75:445–459

    Article  Google Scholar 

  • Shanks WC III, Slack JF, Till AB, Thurston R, Gemery-Hill P (2014) Sulfur and oxygen isotopic study of early Paleozoic sediment-hosted Zn–Pb(–Ag–Au–Ba–F) deposits and associated hydrothermal alteration zones in the Nome Complex, Seward Peninsula, Alaska. In: Dumoulin JA, Till AB (eds) Reconstruction of a Late Proterozoic to Devonian continental margin sequence, northern Alaska, its paleogeographic significance, and contained base-metal sulfide deposits. Geol Soc Amer Spec Pap 506:235–258

  • Slack JF, Grenne T, Bekker A, Rouxel OJ, Lindberg PA (2007) Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet Sci Lett 255:243–256

  • Slack JF, Grenne T, Bekker A (2009) Seafloor-hydrothermal Si–Fe–Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater. Geosphere 5:302–314

  • Slagstad T, Pin C, Roberts D, Kirkland CL, Grenne T, Dunning G, Sauer S, Andersen T (2013) Tectonomagmatic evolution of the Early Ordovician suprasubuction-zone ophiolites of the Trondheim region, mid-Norwegian Caledonides. In: Corfu F, Gasser D, Chew DM (eds) New perspectives on the Caledonides of Scandinavia and related areas. Geol Soc Lond Spec Publ 390:541–561

  • Sperling EA, Strauss JV, Fraser T, Miller AJ, Farrell UC, Tecklenburg S, Malinowski J, Plaza-Torres S, Bhajan L, Stockey RG, Cole DB, Planavsky NJ, Loydell DK, Lenz A, Melchin MJ (2018) An exceptional record of early- to mid-Paleozoic redox change from the Road River Group, Yukon, Canada. Goldschmidt2018 Conference, Abstracts

  • Spry PG, Peter JM, Slack JF (2000) Meta-exhalites as exploration guides to ore. In: Spry PG, Marshall B, Vokes FM (eds) Metamorphosed and metamorphogenic ore deposits. Rev Econ Geol 11:163–201

  • Steele-MacInnis M, Han L, Lowell RP, Rimstidt JD, Bodnar RJ (2012) The role of fluid phase immiscibility in quartz dissolution and precipitation in sub-seafloor hydrothermal systems. Earth Planet Sci Lett 321–322:139–151

    Article  Google Scholar 

  • Sun Z, Zhou H, Glasby GP, Yang Q, Yin X, Li J, Chen Z (2012) Formation of Fe–Mn–Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge, Lau Basin. J Asian Earth Sci 43:64–76

  • Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67:70–78

    Article  Google Scholar 

  • Taitel-Goldman N, Singer A (2002) Metastable Si–Fe phases in hydrothermal sediments of Atlantis II Deep, Red Sea. Clay Miner 37:235–248

  • Taitel-Goldman N, Koch CB, Singer A (2004) Si-associated goethite in hydrothermal sediments of the Atlantis II and Thetis deeps, Red Sea. Clays Clay Miner 52:115–129

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford 312 pp

    Google Scholar 

  • Thompson CK, Kah LC (2012) Sulfur isotope evidence for widespread euxinia and a fluctuating oxycline in Early to Middle Ordovician greenhouse oceans. Palaeogeogr Palaeoclimatol Palaeoecol 313–314:189–214

  • Vaughan DJ, Craig JR (1997) Sulfide ore mineral stabilities, morphologies, and intergrowth textures. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, Third edn. Wiley, New York, pp 367–434

    Google Scholar 

  • Wallace MW, Hood AS, Shuster A, Greig A, Planavsky NJ, Reed CP (2017) Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet Sci Lett 466:12–19

    Article  Google Scholar 

  • Wang L, Shi X, Jiang G (2012) Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeogr Palaeoclimatol Palaeoecol 333:218–227

  • Wignall PB, Newton R (1998) Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. Am J Sci 298:537–552

    Article  Google Scholar 

  • Wignall PB, Newton R, Brookfield ME (2005) Pyrite framboid evidence for oxygen-poor deposition during the Permian–Triassic crisis in Kashmir. Palaeogeogr Palaeoclimatol Palaeoecol 216:183–188

    Article  Google Scholar 

  • Wilkin RT, Arthur MA, Dean WE (1997) History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth Planet Sci Lett 148:517–525

    Article  Google Scholar 

  • Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60:3897–3391

    Article  Google Scholar 

  • Zierenberg RA, Shanks WC III (1988) Isotopic studies of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Can Mineral 26:737–753

Download references

Acknowledgements

We thank Aivo Lepland (NGU) for helpful discussions and comments on possible diagenetic vs. water-column origins of iron-formation precursors. The late Frank Vokes (Geological Institute NTNU) donated some of the samples used in this study, including those of Kari Sand. Bjørn Willemoes-Wissing (NGU) assisted in early SEM and electron microprobe analyses. Brent Valentine (USGS) provided high-resolution images and EDS data obtained by field emission SEM. Harvey Belkin (USGS) supplied electron microprobe analyses of iron silicate minerals. Pat Shanks (USGS) provided sulfur isotope data on samples of sulfide iron formation. We also acknowledge Julie Dumoulin, Robert Blodgett, and John Repetski (all USGS) and Cris Little (University of Leeds) for examining fossil fragments in the silicate iron formation. We especially thank Tea Laurila for a detailed and thoughtful review of the manuscript, as well as Nils Jansson, Rob Robinson, and Ryan Taylor for helpful comments.

Funding

This study was funded by the Geological Survey of Norway. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tor Grenne.

Additional information

Editorial handling: P. Eilu

Electronic supplementary material

Online Resource 1

(DOCX 17 kb)

Online Resource 2

(XLSX 35 kb)

Online Resource 3

(DOCX 21 kb)

Online Resource 4

Binary plots of P2O5 vs. (A) Er (representative of middle to heavy REEs) and (B) Ce anomaly for Løkken and Stord iron formations. Recalculated detrital-free values; bulk rock data are shown by gray shaded field (see Fig. 7) (PNG 144 kb)

High resolution image (EPS 558 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grenne, T., Slack, J.F. Mineralogy and geochemistry of silicate, sulfide, and oxide iron formations in Norway: evidence for fluctuating redox states of early Paleozoic marine basins. Miner Deposita 54, 829–848 (2019). https://doi.org/10.1007/s00126-018-0840-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0840-2

Keywords

Navigation