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Abstract
Key message  Genomic relationship matrices based on mid-parent and family bulk genotypes represent cost-efficient 
alternatives to full genomic prediction approaches with individually genotyped early generation selection candidates.
Abstract  The routine usage of genomic selection for improving line varieties has gained an increasing popularity in recent 
years. Harnessing the benefits of this approach can, however, be too costly for many small-scale breeding programs, as in 
most genomic breeding strategies several hundred or even thousands of lines have to be genotyped each year. The aim of 
this study was thus to compare a full genomic prediction strategy using individually genotyped selection candidates with 
genomic predictions based on genotypes obtained from pooled DNA of progeny families as well as genotypes inferred from 
crossing parents. A population of 722 wheat lines representing 63 families tested in more than 100 multi-environment trials 
during 2010–2019 was for this purpose employed to conduct an empirical study, which was supplemented by a simulation 
with genotypic data from further 3855 lines. A similar or higher prediction ability was achieved for grain yield, protein 
yield, and the protein content when using mid-parent or family bulk genotypes in comparison with pedigree selection in the 
empirical across family prediction scenario. The difference of these methods with a full genomic prediction strategy became 
furthermore marginal if pre-existing phenotypic data of the selection candidates was already available. Similar observa-
tions were made in the simulation, where the usage of individually genotyped lines or family bulks was generally preferable 
with smaller family sizes. The proposed methods can thus be regarded as alternatives to full genomic or pedigree selection 
strategies, especially when pedigree information is limited like in the exchange of germplasm between breeding programs.

Introduction

Genomic prediction has been postulated as a new para-
digm in plant breeding several years ago, and since then 
implemented in several line breeding programs world-wide 
(Juliana et  al. 2019; Borrenpohl et  al. 2020; Tsai et  al. 
2020). Advanced and young generation lines are for this 
purpose usually genotyped at several thousand marker loci 
to elucidate the genetic relationship between them (Crossa 

et al. 2017). Based on these common molecular markers, 
the advanced generation and well-phenotyped lines are 
subsequently used to predict genomic breeding values for 
young selection candidates, for which non- or only limited 
phenotypic information is available yet (Heslot et al. 2012; 
Robertsen et al. 2019). The usage of these predicted breed-
ing values for conducting a genomic selection is oftentimes 
realized during a phase of preliminary yield trials (Borren-
pohl et al. 2020; Tsai et al. 2020), as the budget of larger 
breeding programs allows to genotype all lines entering this 
testing stage. Nevertheless, the incurring costs to genotype 
several hundred or even thousands of lines each year can be a 
major restriction in small-scale line breeding programs both 
in developed and developing countries, despite strategies 
like shallow or targeted genotyping-by-sequencing (Gorjanc 
et al. 2017; Abed et al. 2018; e Sousa et al. 2019). A classical 
alternative to genotyping is given by the systematic usage 
of pedigree records for predicting breeding values, which 
makes, however, the major assumption of equal parental 
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contributions and models only the expected mean of each 
given progeny population. Legarra et al. (2009) as well as 
Christensen and Lund (2010) suggested thus a combination 
of both mentioned strategies by utilizing pedigree records 
of all individuals in the training and selection population for 
computing a combined relationship matrix of genotyped and 
non-genotyped individuals. Originally proposed for animal 
breeding, this single-step genomic selection method showed 
also some merit to increase the prediction accuracy for both 
genotyped and non-genotyped individuals in plant breeding 
contexts when enlarging the training population by non-
genotyped individuals (Ashraf et al. 2016; Imai et al. 2019).

The expected population mean of a bi-parental population 
of non-genotyped individuals can, alternatively to pedigree 
records, also be inferred from the molecular marker geno-
types of both parents. The referred mid-parent genotype is, 
e.g., frequently used in genomic hybrid breeding to construct 
two-way or three-way hybrids from their inbred parents 
(Zhao et al. 2013). In breeding programs for inbred cereals, 
which use multiple steps of selfing or direct derivation of 
homozygous material by double haploid technology, lines 
are pre-selected and pass through several bottlenecks before 
their grain yield potential is firstly tested in observation or 
preliminary yield trials, i.e., the stage at which genotyping is 
usually conducted in genomic line breeding. This issue can 
lead to deviations of the expected allele frequency within 
families, as some alleles are being fixed or distorted towards 
favorable alleles by breeder’s selection with respect to easy 
and early to assess traits like anthesis date or by genetic 
hitchhiking. One convenient option to address this issue 
is the pooling of DNA samples from multiple individuals 
and fingerprinting family bulks instead of employing the 
expected mid-parent genotype of the selection candidates. 
A fraction of the genotyping budget is moreover necessary 
with both the mid-parent or family bulk methods in com-
parison with a full genomic breeding strategy that requires 
fingerprinting all individual early generation lines, as usu-
ally the number of families and their parents is substantially 
smaller than the total number of these early generation lines 
tested in preliminary yield trials. The aim of this study was 
thus to compare classical pedigree with genomic prediction 
models based on mid-parent, family bulk, and individual 
genotypes as well as a single-step genomic prediction and 
assess their potential for small-scale line breeding programs 
with a limited genotyping budget.

Materials and methods

Plant material

A population of 4577 F4:6, F5:7 or double haploid winter 
wheat (Triticum aestivum L.) breeding lines from 1463 

different families was analyzed in this study. All lines were 
developed and tested in the framework of variety develop-
ment in the winter wheat breeding program of Saatzucht 
Donau GesmbH. & CoKG. The size of each family varied 
between 1 and 51 lines with an average of three lines per 
family and a genealogy of 1062 ancestors tracing back up to 
13 generations. DNA from all breeding lines was extracted 
using a modification of the protocol outlined by Saghai-
Maroof et al. (1984), and shipped in 96-well microtiter plates 
to Australia for genotyping with the DArTseq genotyping-
by-sequencing (GBS) approach (Diversity Arrays Tech-
nology Pty Ltd 2020a). DNA samples were processed in 
digestion/ligation reactions using a combination of PstI and 
HpaII restriction enzymes similar to Kilian et al. (2012), but 
using two different adapters corresponding to two different 
restriction enzyme overhangs instead of one PstI-compati-
ble adapter. Mixed PstI–HpaII fragments were effectively 
amplified in 30 rounds of polymerase chain reaction (PCR). 
Following the PCR, 77 cycles of single read sequencing on 
Illumina Hiseq2500 were run using the amplification prod-
ucts from each sample of the 96-well microtiter plates. The 
proprietary Diversity Arrays Technology Pty Ltd analytical 
pipelines, offered as part of the genotyping service, were 
used for processing the sequences generated from each of 
the lanes. Filtering of the raw sequences was performed 
for the barcoded region and the entire read. A Phred score 
of ≥ 30 was utilized for the barcoded region (99.9% base 
call accuracy with a ≥ 75% pass percentage), while for the 
whole read the Phred score was set to ≥ 10 (90% base call 
accuracy with a ≥ 50% pass percentage). Approximately 
1,200,000–2,500,000 sequences per sample were utilized 
in marker calling and identical sequences were collapsed 
into FASTQCOL files. The sequences were subsequently 
clustered by similarity with threshold sequence distance of 
three base pairs. The clusters were then parsed into SNP 
markers using an algorithm that was trained with data of sev-
eral hundred wheat populations generated on the employed 
genotyping-by-sequencing platform.

Quality control was applied by filtering out markers with 
more than 10% of missing data and a minor allele frequency 
smaller than 5%. One marker from completely identical 
marker pairs was retained at random to remove redundant 
markers. This resulted in a set of 2151 SNP markers with 
known genetic positions on the wheat consensus map v4.0 
provided by Diversity Arrays Technology Pty Ltd (2020b). 
This map was used to generate virtual progeny populations 
in a simulation study involving all 4577 breeding lines as 
will be described below. The markers were coded as + 1 for 
the homozygous major and − 1 for the homozygous minor 
allele at a given locus, while 0 designated heterozygous loci. 
Phenotypic data for protein content (%) and grain yield (dt 
ha−1) from a subset of 722 lines was furthermore analyzed 
to conduct an empirical study. This subset comprised 63 
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families with an average size of 11 lines, which were cho-
sen as at least four lines were phenotyped in several series 
of multi-environment trials between 2010 and 2019 from 
each of these families. Since molecular markers with known 
and unknown map position were employed in the empirical 
study, the utilized marker set was with 2780 SNPs slightly 
larger in comparison with the simulation study. The larger 
marker set was also used to investigate the population struc-
ture among all 4577 lines by a principal component analysis 
(Suppl. Figure S1). The genetic relationship among the 722 
used in the empirical study was also inspected with a rela-
tionship matrix based on pedigree records (Henderson 1976) 
(Suppl. Figure S2).

Statistical analysis of the phenotypic data

Phenotypic data for protein content and grain yield was 
assessed in 151 Central and Eastern European multi-
environment trials from 2010 to 2019, which were firstly 
analyzed individually with various models correcting for 
spatial trends. Adjustments for spatial trends within each 
multi-environment trial were done by testing all 15 pos-
sible combinations of random row and/or column effects 
with/without modelling autoregressive variance–covariance 
structures between the plots either in row, in column or in 
both directions (Burgueño et al. 2000) and choosing the best 
fitting model by Akaike’s information criterion (AIC). The 
repeatability of each trial was assessed by:

where �2
G
 designates the genetic variance of the investigated 

trait, and MVD the mean variance of a difference between 
the Best Linear Unbiased Estimates (BLUEs) (Schmidt et al. 
2019). BLUEs from trials with h2 > 0.2 were subsequently 
used for an across-trial analysis within each year with a lin-
ear mixed model of the form:

where yij are the BLUEs from the individual trials for each 
trait respectively, � is the grand mean, and gi is the effect of 
the ih line that was fixed to compute across-trial BLUEs. The 
effect of the jth trial tj was fixed, while the random effect eij 
that incorporated both the genotype-by-environment interac-
tion and the residual effect followed a normal distribution 
with � ∼ N(0, ��2

e
) . An analysis across all years for the subset 

of 722 lines as well as an additional set of 146 lines, which 
facilitated a closer connection between the years, was con-
ducted with the linear mixed model:

(1)h2 = �2
G
∕
(

�2
G
+

1

2
MVD

)

(2)yij = � + gi + tj + eij

(3)yik = � + gi + jk + eik

where yik are the across-trial BLUEs for each trait respec-
tively and jk designated the random year effect with 
� ∼ N(0, ��2

j
) , while all other previous definitions are being 

retained. The protein yield (dt ha−1) for each line was finally 
computed by multiplying the BLUEs from the protein con-
tent and grain yield derived from the across-year analyses. 
All phenotypic analyses were conducted with the mixed 
model packages sommer (Covarrubias-Pazaran 2016) and 
ASReml 3 (VSN international 2018) for R (R Core Team 
2020).

Single‑trait and trait‑assisted prediction models

Different single-trait genomic prediction models were tested 
by randomly sampling 45 families and four lines per family 
into a training population, and 15 different families and four 
lines per family into a validation population. This random 
sampling of 180 and 60 lines into training and validation 
populations was repeated 100 times, and aimed to reflect 
a scenario where a training population of advanced gen-
eration lines tested in multi-environment trials is used to 
predict the performance of young selection candidates in the 
preliminary yield trial stage. The used resampling scheme 
should, however, be seen as an approximation for such a sce-
nario in order to empirically compare the prediction models 
described in the next paragraphs. This approximation was 
made as the available phenotypic data did not allow to build 
reasonable scenarios for testing a prediction across breeding 
cycles or cohorts with adequate family sizes. The parents of 
the respective families were not included into the training 
or validation population in the empirical study since pheno-
typic information was not available for all of them. Genomic 
estimated breeding values were obtained by fitting Best Lin-
ear Unbiased Prediction Models of the from:

where � is again the grand mean, yi is the phenotypic value 
for either the protein content, grain yield or protein yield 
of the ith line, and ei the residual effect with � ∼ N(0, ��2

e
) . 

The effect gi of the ith line was modelled as random with 
� ∼ N(0,��2

G
) for pedigree best linear unbiased predictions 

(P-BLUP), where � was computed as suggested by Hen-
derson (1976). Alternatively, the effect gi was modelled as 
� ∼ N(0,��2

G
) with the genomic relationship matrix � for 

genomic best linear unbiased predictions (G-BLUP), which 
was built following VanRaden (2008):

where � is a centered marker matrix of the j lines with 
Wjl = Zjl + 1 − 2pl and pl being the allele frequency at the 
lth locus. The two described pedigree and genomic predic-
tion models represented the baseline models, and were firstly 

(4)yi = � + gi + ei

(5)� = ��T∕2Σ(1 − pl)pl
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compared with a single-step genomic prediction model 
(SSG-BLUP) with � ∼ N(0,��2

G
) for which the hybrid rela-

tionship matrix

was built following Legarra et al. (2009) as well as Chris-
tensen and Lund (2010). The matrix �11 contained the pedi-
gree relationship between non-genotyped lines, �22 the pedi-
gree relationship between genotyped lines, while �12 and 
�21 model the pedigree relationship between genotyped and 
non-genotyped lines. A breeding strategy in which merely 
advanced generation lines are genotyped was assumed for 
implementing this method in the study at hand; hence the 
genotyped lines in � referred to the 180 lines in the training 
population and the non-genotyped lines to the 60 lines in the 
validation population. The inverse of � , which is necessary 
for solving the underlying mixed model equations, was given 
by Misztal et al. (2013):

where �w = ��adj + ��22 and the scaling factors were 
set to � = 0.95 and � = 0.05 in order to invoke a blending 
of the involved pedigree and genomic relationship matri-
ces, after adjusted the genomic relationship matrix � by 
solving:

and setting �adj = a + b� as suggested by Christensen et al. 
(2012). Alternatively, a genomic breeding strategy that, like 
the single-step genomic prediction, targeted the family aver-
age but without pedigree information was tested by inferring 
the expected genotype of each family in the validation popu-
lation from the genotypes of the parents by:

where mfl and ffl are the maternal and paternal geno-
type calls at the lth locus of the fth family. This method 
rendered the expected genotype of each family essentially 
equivalent to the mid-parent (MP) or an F1 genotype from 
a bi-parental cross. The potential of using pooled DNA 
samples from a family bulk was furthermore tested by 
averaging across the marker allele calls at each locus of 
all individuals in such a bulk, as suggested in the animal 
breeding literature (Baller et al. 2020):

(6)� =

(

�11 − �12�
−1
22
(�w − �22)�

−1
22
�21 �12�

−1
22
�w

�w�
−1
22
�

21
�w

)

(7)�−1 = �−1 +

(

0 0

0
(

��adj + ��22

)−1
− �−1

22

)

(8)a + b ⋅ diag(�) = diag(�22)

(9)a + b ⋅ �̄ = �22

(10)MPf l =
1

2
(mfl + ffl)

where gil is the genotype of the ith line in the fth fam-
ily at the lth locus, and nf is the number of lines in the fth 
family. Equation (11) approximated thus the outcome when 
genotyping a bulk of individuals from a given family with 
a genotyping-by-sequencing-based approach or using a 
quantitative estimate of allele calls at each locus (Bell et al. 
2017). Alternatively, the resulting average genotype calls 
were rounded to +1 if Ffl > 0.5 , −1 if Ffl < −0.5 and to 0 if 
−0.5 < Ffl < 0.5 , which reflected a situation when using dis-
crete allele calls from a SNP Array (Alexandre et al. 2019, 
2020). The individual marker allele calls of each line in 
the validation population were finally replaced by the mid-
parent and family bulk genotypes in the marker matrix � 
in order to accommodate them in the computation of the 
genomic relationship matrix � by Eq. (5):

where the matrix �11 contains the genomic relationship in 
the training population with individual genotyped lines, �22 
the relationship between the lines in the validation popula-
tion expressed either by their mid-parent of family bulk gen-
otypes, whereas �12 and �21 model the genomic relationship 
between the lines in the training and validation population. 
It should be noticed that in Eq. (12) identical genotypes are 
contained in �22 and � is accordingly singular and cannot 
be inverted. Hence, the distribution of the random line effect 
in (4) was set to � ∼ N(0,�mod�

2
G
) where �mod = �� + ��, 

with � being an identity matrix and � = � = 0.5 , which cor-
responded to blend � with a pedigree relationship matrix 
of independent non-inbred founder individuals. Given �mod 
was based on mid-parent genotypes the predictions will be 
referred to M-BLUP herein, whereas in cases when �mod was 
based on pooled DNA samples from family bulks the model 
will be designated as F-BLUPArray-like or F-BLUPGBS-like 
depending if rounded or unrounded averaged allele calls 
were used. A genomic and pedigree-based heritability was 
determined by fitting either a P-BLUP or G-BLUP model 
with all 722 phenotyped lines and expressed as:

where �2
P
 is the phenotypic variance, i.e., the unbiased sam-

ple variance computed from the across-year BLUEs of the 
investigated trait, and �2

e
 the residual variance estimated by 

model (4).
It is, however, commonly known that pedigree predic-

tion models can only discriminate between family averages 
(Daetwyler et al. 2007), which is likewise a limitation of 

(11)Ffl =

∑nf
i=1

gfil

nf

(12)� =

(

�11 �12

�21 �22

)

(13)h2 = (�2
P
− �

2

e
)∕�2

p
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the mid-parent and family bulk genomic prediction models. 
Exploiting pre-existing information of correlated traits or 
the trait of interest per se, e.g., from observation trials can 
circumvent this disadvantage (Pszczola et al. 2013; Michel 
et al. 2020a). Prediction models with individual or whole-
family genotypic information of the validation population 
were thus tested for the target trait protein yield, where either 
the protein content or grain yield was exploited as pre-exist-
ing sources of phenotypic information or secondary traits for 
an indirect selection. The above-described Best Linear Unbi-
ased Prediction Models were for this purpose extended to:

where � is again the grand mean, gi the random effect of 
the of the ith line, and yi are the phenotypic values, i.e., 
across-year BLUEs of the protein yield, while � is the regres-
sion coefficient for the covariate xi containing either the 
phenotypes for protein content or grain yield. The genomic 
estimated breeding values of the ith line were accordingly 
computed by

where γ̂ and ĝi are the estimate of the regression coefficient 
and the predicted line performance respectively, while xi 
is in this case the observed phenotype for protein content 
or grain yield of the ith line in the validation population. 
The resampling for these trait-assisted prediction models 
was likewise repeated 100 times and compared with uti-
lizing solely the protein content or grain yield as predic-
tor traits for an indirect selection. The prediction ability for 
all models was assessed by correlating the predicted with 
the observed phenotypic performance. The relative selec-
tion gain was computed as the relative difference between 
a fraction of the best 20–80% of the lines based on each of 
the tested prediction and the phenotypic average of the entire 
validation population, while pairwise comparisons between 
observed and all predicted performance values were made 
and expressed as the percentage of co-selected lines. The 
pedigree and hybrid relationship matrices, � and � , were 
generated with the R package AGHmatrix (Amadeu et al. 
2016) and all prediction models were fitted with sommer 
(Covarrubias-Pazaran 2016).

Simulation and selection among virtual populations

The above-described models were subsequently investigated 
in an additional simulation study, where bi-parental fami-
lies actually tested in preliminary yield trials in 2014, 2015, 
2016, 2017 or 2018 were 50 times randomly sampled and the 
marker data from their parents used to simulate virtual prog-
eny populations similar to Bernardo (2014) and Mohammadi 
et al. (2015). A total of 30 families were sampled for each 

(14)yi = � + � ⋅ xi + gi + ei

(15)GEBVi = � + �̂ ⋅ xi + ĝi

of the mentioned years and 90 progenies were simulated per 
family with the R/qtl package (Broman et al. 2003) based on 
a random sample of 2100 marker loci with known genetic 
map position and the marker genotypes of their parents. 
These virtual progeny populations constituted the valida-
tion population in the simulations, while 180 additional lines 
with observed marker data were sampled into a training pop-
ulation. The sampling of the training population was thereby 
restricted to lines that were tested in years preceding 2014, 
2015, 2016, 2017 or 2018, respectively, and included either 
the parents of the sampled families or explicitly excluded 
them from the sampling process. It should be noticed that the 
random sampling was restricted to a number of n = 180 − p 
lines when all p parents were included in the training popu-
lation. Hence, the simulation study aimed to reflect a sce-
nario where a training population of advanced generation 
lines from previous breeding cycles or cohorts is used to pre-
dict the performance of another cohort comprised of young 
selection candidates in the stage of preliminary yield trials.

A quantitatively inherited trait was simulated by sampling 
NQTL = 100 marker loci, while the other set of NSNP = 2000 
markers represented linked loci for building genomic rela-
tionship matrices. QTL effects were randomly sampled from 
� ∼ N(0, 1) to compute estimated breeding values by:

where marker genotypes of lines in the training and valida-
tion population are contained in the matrix � , and � is a 
vector of QTL effects that were used to derive the vector ���� 
of true breeding values. The entries for the vector of error 
effects � were randomly sampled from a normal distribution 
with zero mean and a variance equal to:

where �2
tbv

 is the variance of the true breeding values, 
and h2 an aspired entry-mean heritability of h2 = 0.30 , 
h2 = 0.50 , and h2 = 0.70 that was separately determined 
for each training population. The corresponding entry-
mean heritability of the validation population was on the 
other hand set to h2 = 0.10 , h2 = 0.30 , and h2 = 0.50 in 
order to reflect the lower accuracy of testing in preliminary 
yield trials. The actual selection candidates were thereafter 
determined by sampling a set of 300 lines from the entire 
validation population of 2700 lines or, according to their 
true breeding value, among the best 30–90% of these lines 
(validation scheme A). The latter was done to examine the 
effect of conducting a selection before actually genotyping 
lines in early generations. Alternatively, the population of 
selection candidates was built by randomly and equally 
sampling 1–5, 10, 20, or 40 lines from each of the families 
constituting the entire validation population of 2700 lines 

(16)���� = �� + � = ���� + �

(17)�2
e
= �2

tbv
×

(

1 − h2

h2

)
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in order to investigate the influence of the family size on 
the efficiency of the tested prediction models (validation 
scheme B).

All prediction models were firstly tested without tak-
ing advantage of pre-existing information of the selection 
candidates. Assuming that such pre-existing information 
of the selection candidates and a trait of interest per se is 
in some cases already available in the stage of preliminary 
yield trials, the tested prediction models were extended by 
a group effect separating the training and validation popu-
lation when exploiting this information source:

where � is again the grand mean, yhi is the estimated breed-
ing value of the ith line within the hth group, sh is the fixed 
group effect separating the training and validation popula-
tion, and ghi is the random line effect with � ∼ N(0,��2

G
) for 

pedigree, � ∼ N(0,��2
G
) for genomic predictions based of 

individual genotypes, � ∼ N(0,��2
G
) for single-step genomic 

predictions, and � ∼ N(0,�mod�
2
G
) for genomic predictions 

based of mid-parent or family bulk genotypes. Heterog-
enous residual variances were moreover modelled in (18) 
for each group to take the different phenotypic data quality 
for the training population and the pre-existing information 
of the selection candidates into account. The accuracy of 
the respective prediction models was finally assessed by 
correlating the predicted with the true breeding values. A 

(18)yhi = � + sh + ghi + ehi

simulated dataset and accompanied R Code are being avail-
able as supplementary material to illustrate the utilized 
models.

Results

The estimated genomic heritability was medium to high as 
expected for grain yield and protein content in an unbalanced 
dataset across multiple locations and years (Table 1). The 
correlation between protein content and grain yield was neg-
ative (r = −0.44), while a positive correlation was observed 
between protein yield and protein content (r = 0.39) as well 
as protein yield and grain yield (r = 0.65). The heritability 
of the protein yield was furthermore slightly higher than for 
grain yield, most likely as the former was computed as a 
multiplicative index from the estimated means of the com-
ponent traits.

The prediction ability for all three investigated traits 
was generally lower when employing a P-BLUP (r = 0.391) 
or SSG-BLUP model (r = 0.400) in comparison with a 
G-BLUP model with individual genotypes (r = 0.455) 
(Table 2). Using mid-parent genotypes in the M-BLUP 
model resulted in a similar performance as pedigree-based 
predictions (r = 0.391), whereas using family bulk gen-
otypes in the F-BLUP models gave the highest average 
prediction ability. The difference between using rounded 
(F-BLUPArray-like) or unrounded (F-BLUPGBS-like) average 
allele calls was, however, marginal (r[Array-like] = 0.462 
vs. r[GBS-like] = 0.457). Exploiting pre-existing data of the 
secondary trait protein content, i.e., a highly heritable 
but weakly correlated trait, to predict protein yield was 
generally beneficial with pedigree or genomic relation-
ship information and resulted in higher prediction abili-
ties than feasible by indirect phenotypic selection (Fig. 1). 
The same observation was made when using pre-existing 
information of grain yield, i.e., a low to medium herit-
able but strongly correlated secondary trait. The rank-
ing of the different prediction methods followed thus 
in the trait-assisted prediction case likewise the pattern 
PBLUP ≅ SSGBLUP ≅ MBLUP < GBLUP ≅ FBLUP   , 

Table 1   Mean, range, and heritability for grain yield, protein con-
tent, and protein yield for the population of 722 lines involved in the 
empirical study

a Heritability based on a Genomic Best Linear Unbiased Prediction 
model
b Heritability based on a Pedigree Best Linear Unbiased Prediction 
model

Trait Min Mean Max h
2

GBLUP

a
h
2

PBLUP

b

Grain yield (dt ha−1) 53.5 68.6 82.0 0.41 0.60
Protein content (%) 11.7 14.0 16.3 0.68 0.69
Protein yield (dt ha−1) 7.7 9.6 11.5 0.49 0.68

Table 2   Average prediction 
abilities obtained in the 100 
times replicated cross-validation 
scheme with the 63 families 
containing the 722 lines in the 
empirical study

Prediction models involved the usage of pedigree (P-BLUP) or genomic relationships from individual gen-
otyped lines (G-BLUP) as well as a combined relationship matrix (SSG-BLUP) and were compared with 
genomic relationship matrices based on mid-parent (M-BLUP) or family bulk genotypes of the selection 
candidates with rounded (F-BLUPArray-like) or unrounded (F-BLUPGBS-like) averaged allele calls
Prediction abilities within each row that share the same letter are not significantly different at α = 5%

Trait P-BLUP G-BLUP SSG-BLUP M-BLUP F-BLUPArray-like F-BLUPGBS-like

Grain yield 0.375a 0.413ab 0.390ab 0.439b 0.445b 0.435b

Protein content 0.469ac 0.539b 0.481ac 0.440a 0.508bc 0.515bc

Protein yield 0.328a 0.412b 0.330a 0.293a 0.434b 0.422b

Average 0.391a 0.455b 0.400a 0.391a 0.462b 0.457b
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which was also reflected by the relative selection gain and 
the proportion of co-selected lines (Suppl. Figures S3-S6).

The simulation study showed on the other hand a simi-
lar prediction accuracy for the M-BLUP and F-BLUP 
models, which outperformed the P-BLUP and SSG-BLUP 
models when no pre-existing data of selection candidates 
was available in validation scheme A with a pre-selected 
fraction of selection candidates (Fig.  2, left column). 
All models were, however, inferior to phenotypic selec-
tion based on observed performance records with entry-
mean heritabilities of h2 = 0.30 and h2 = 0.50 in this case. 
This disadvantage became smaller if parents were part of 
the training population, in which case G-BLUP was still 
preferable to the other prediction models (Fig. 2, right 
column). Given that pre-existing phenotypic data was 
already available, e.g., from preliminary yield trials, an 
advantage of modelling relationships among lines was 
found in comparison with a phenotypic selection based 
solely on observed performance, especially under the 
assumption of a low entry-mean heritability (h2 = 0.10). 
Modelling genomic relationships among individual lines 
resulted again in the highest prediction accuracy in this 
scenario, followed by the employment of family bulk and 
mid-parent genotypes. The relative difference between the 
various models was, however, marginal in this situation, 
ranging on average from 5.5% with h2 = 0.10 to 1.7% with 
h2 = 0.50. Notably, the prediction accuracy became always 
lower if the lines in the validation population came from 
a population with a stronger pre-selection towards higher 
average performance.

Aside from the effect of a pre-selection, the effect of 
the family size on the accuracy of the different prediction 
models was investigated by sampling an equal number of 
lines from each family into the validation population repre-
senting the selection candidates (validation scheme B). The 
prediction accuracy was again higher when the parents of 
each family were included in the training population (Fig. 3, 
right column) in comparison with a model training without 
phenotypic records of the parents (Fig. 3, left column). Irre-
spective of parental information, all prediction models were 
mostly invariant to the alternations in the family size when 
no pre-existing information of the selection candidates was 
exploited, although the F-BLUP models with family-bulk 
genotypes showed a slightly higher performance in compari-
son with the usage of mid-parent genotypes in the M-BLUP 
model for smaller family sizes. An increase in prediction 
accuracy was on the other hand observed when predicting 
larger families and at the same time utilizing pre-existing 
information for model training, most likely due to the inclu-
sion of an increasing number of full-sibs into the training 
population. The same tendencies could also be found with 
the empirical data, although the differences were much sub-
tler in this case (Suppl. Figures S7 + S8).

Discussion

Fingerprinting individual lines in both the training and 
validation or selection population is probably the most 
common approach when implementing genomic prediction 

Fig. 1   Boxplots of the predic-
tion ability for protein yield 
(PY) using prediction models 
with pedigree relationships 
(P-BLUP), genomic relation-
ships from individual genotyped 
lines (G-BLUP), a combined 
genomic-pedigree relationship 
matrix (SSG-BLUP) as well as 
mid-parent (M-BLUP) and fam-
ily bulk genotypes of the selec-
tion candidates with rounded 
(F-BLUPArray-like) or unrounded 
(F-BLUPGBS-like) averaged allele 
calls. The respective baseline 
models were compared with a 
trait-assisted selection exploit-
ing pre-existing information 
of the secondary traits protein 
content (PC) or grain yield 
(GY) as well as with an indirect 
phenotypic prediction by the 
protein content (solid horizon-
tal line) or grain yield (dashed 
horizontal line)
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in a line breeding program. Although such a strategy 
resulted in the study at hand as well as other studies in 
a high predictive performance (Haikka et al. 2020a; Tsai 
et al. 2020), the additional costs might be too high for 
many small-scale line breeding programs in developed and 
developing countries. A trade-off is in these cases pos-
sibly needed, e.g., by reducing the phenotyping intensity 
and reallocate the available budget, which would even 
then not always allow to fingerprint several hundred lines 
each year. The usage of pedigree data invokes in theory no 
additional costs aside from record keeping in a database 
system, although missing and erroneous pedigree records 
are well-known issues in practical applications (Munoz 
et al. 2014; Endelman et al. 2017). A clear constraint of a 
pedigree-based selection is though given by the inability 
to target the Mendelian sampling term, i.e., lines within 

a given family receive the same breeding value and can-
not be differentiated (Daetwyler et al. 2007). The Mende-
lian sampling can, however, be addressed in a pedigree-
assisted selection by exploiting pre-existing information 
of correlated secondary traits or the trait of interest per se 
(Pszczola et al. 2013). Despite the premise that genomic 
prediction is oftentimes implemented at the stage of 
preliminary yield trials in line breeding programs, very 
similar prediction abilities have been found for pedigree-
assisted and genomic-assisted selection when pre-existing 
information from such trials is included into the modeling 
process (Juliana et al. 2020; Michel et al. 2020b). The 
usage of the protein content or grain yield as secondary 
traits for predicting the target trait protein yield resulted 
exemplarily also in a smaller difference between genomic 
and pedigree predictions.

Fig. 2   Prediction accuracy for 
different pre-selection intensi-
ties of the selection candidates 
for quantitative inherited traits 
with an entry-mean heritability 
of h2 = 0.10 (A + B), h2 = 0.30 
(C + D), and h2 = 0.50 (E + F) in 
the simulation study (valida-
tion scheme A). The prediction 
models were based on pedigree 
(P-BLUP) or genomic relation-
ships from individual genotyped 
lines (G-BLUP), a combined 
genomic-pedigree relation-
ship matrix (SSG-BLUP) as 
well as mid-parent (M-BLUP) 
and family bulk genotypes of 
the selection candidates with 
rounded (F-BLUPArray-like) or 
unrounded (F-BLUPGBS-like) 
averaged allele calls, and were 
compared with phenotypic 
selection based on observed 
performance records (PHENO). 
All models were fitted with 
(solid lines) or without (dashed 
lines) exploiting pre-existing 
information of the selection 
candidates, while parents were 
either excluded (left column) or 
included (right column) in the 
training population
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A further alternative in the above-mentioned prediction 
strategy is therefore given by using the mid-parent geno-
type of each family instead of pedigree records. This would 
moreover require to fingerprint merely a couple of dozen 
crossing parents instead of hundreds of selection candidates 
each year as in a full-scale genomic selection approach. 
These potential crossing parents can be employed as training 
population, and might comprise advanced generation well-
phenotyped breeding lines from a breeding programs native 
gene pool as well as further germplasm of interest from other 
programs. Genotyping crossing parents as in the mid-parent 
method has moreover several conceptional advantages in 
comparison with the pedigree method, e.g., the option to 
genomically plan crosses for a more efficient diversity man-
agement within a breeding program (Osthushenrich et al. 

2017; Akdemir et al. 2019; Neyhart et al. 2019). Further pos-
sibilities opened up by genotyping crossing parents are the 
availability of genomic predictions for difficult to phenotype 
traits that cannot be observed every year, like winter hardi-
ness (Beil et al. 2019; Michel et al. 2019), or for costly to 
phenotype traits like baking quality (Hayes et al. 2017; Ben-
Sadoun et al. 2020) and mycotoxin content (Haikka et al. 
2020b; Verges et al. 2020). These predictions can be valu-
able inputs to further guide parental choices as phenotyping 
for these traits might be restricted to a few best performing 
advanced generation lines in small-scale breeding programs. 
The mentioned points pose thus a clear advantage of mid-
parent genotypes in comparison with pooled DNA samples 
from family bulks taken in the stage of preliminary yield 
trials, since no individual genotypic information of potential 

Fig. 3   Prediction accuracy for a 
varying number of lines equally 
sampled from each family in 
the validation population for 
quantitative inherited traits 
with an entry-mean heritability 
of h2 = 0.10 (A + B), h2 = 0.30 
(C + D), and h2 = 0.50 (E + F) in 
the simulation study (valida-
tion scheme B). The prediction 
models were based on pedigree 
(P-BLUP) or genomic relation-
ships from individual genotyped 
lines (G-BLUP), a combined 
genomic-pedigree relation-
ship matrix (SSG-BLUP) as 
well as mid-parent (M-BLUP) 
and family bulk genotypes of 
the selection candidates with 
rounded (F-BLUPArray-like) or 
unrounded (F-BLUPGBS-like) 
averaged allele calls, and were 
compared with phenotypic 
selection based on observed 
performance records (PHENO). 
All models were fitted with 
(solid lines) or without (dashed 
lines) exploiting pre-existing 
information of the selection 
candidates, while parents were 
either excluded (left column) or 
included (right column) in the 
training population
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parents is assessed in the latter. This constraint makes it nec-
essary to re-genotype specific lines in advanced generations 
to build and extend a training population in this approach. 
However, a deviation from the expected population average 
with respect to parental contributions, e.g., by factors like 
random genetic drift and pre-selection most likely resulted 
in a higher prediction ability of the family bulk method in 
comparison with the mid-parent genotype as well as single-
step genomic prediction methods (Suppl. Figure S9). This 
deviation was smaller for validation scheme A with different 
pre-selection intensities in the simulation study as compared 
to the empirical study. It was in this case, however, also 
dependent on the family size with smaller families having a 
larger deviation from the expectation (Suppl. Figure S10). 
The latter effect was also evident in validation scheme B 
with an equal sampling of lines from each family (Suppl. 
Figure S11), which indicated that the usage of individually 
genotyped lines or family bulks might be slightly prefer-
able in comparison with methods that are based on expected 
population averages such as pedigree predictions when fami-
lies are small. Combining the genomic relationship matrix 
of family bulks with pedigree information by blending both 
matrices represented beyond that also an interesting option, 
which did, however, not show any or a negligible advantage, 
except when the number of genotyped lines in the training 
population were four times smaller than the number of non-
genotyped lines (data not shown).

One drawback of the study at hand is certainly that the 
expected genotyping result of such family bulks was merely 
computed based on genotype calls from individual lines, 
and that technical errors during DNA pooling like the over-
representation of one breeding line was ignored similarly as 
in previous animal breeding studies (Alexandre et al. 2019, 
2020; Baller et al. 2020). Although the influence of such an 
overrepresentation on the prediction ability has yet to be 
determined experimentally, it was tested in silico by increas-
ing the proportion of one line in a given family bulk as well 
as increasing the number of families with an overrepresented 
line in order to obtain a hint of its impact (Suppl. Figure 
S12). Using the empirical dataset for this investigation, a 
decrease in prediction ability of up to 5% was observed when 
multiple families were biased towards the genotype of one 
family member. For the purpose of actual applications, it 
is thus recommendable to aim at bulking plant material or 
DNA in equal proportions with respect to the family mem-
bers to appropriately reflect the families’ genetic makeup 
during the generation of high-quality genotypic data (Sac-
comanno et al. 2020).

The reliance on genotypic data to clarify relationships in 
breeding programs has the general benefit of modeling real-
ized instead of expected relationships, and can also be used 
to clarify genetic relationships among a native gene pool 
and potential parents introduced into a breeding program 

from external sources. This might be especially valuable 
for germplasm acquired in the framework of the breeders’ 
exemption, for which detailed pedigree information is often 
absent. Hence, using a combination of the mid-parent and 
family bulk genotyping strategies can constitute an interest-
ing alternative to pedigree selection when no systematic or 
merely shallow pedigree information is available. This can 
be particularly convenient during the first phase of imple-
menting genomic selection in a line breeding program as 
seed of all crossing parents used in the past, whose progenies 
are currently pending selection candidates, might not be 
available any more due to long breeding cycles in the devel-
opment of line cultivars. Genotyping advanced generation 
lines, crossing parents tested in more recent years as well as 
family bulks of current early generation selection candidates 
being tested in preliminary yield trials can thus be a promis-
ing starting point when initiating such an endeavor.

Conclusions

Genotyping individual lines for a genomic-based selection 
showed the highest advantage when no pre-existing phe-
notypic data was available as, in contrast to other methods 
employed in this study, this strategy allowed in such cases a 
differentiation between lines within families. Notwithstand-
ing, a high predictive performance was likewise achieved 
by models using mid-parent or family bulk genotypes in a 
genomic breeding strategy with pre-existing information 
of the selection candidates. This predictive performance 
can moreover be realized, depending on the breeding pro-
gram, with a much smaller genotyping budget than a full 
genomic breeding strategy in which all individual early 
generation lines are genotyped. Assuming for example 
that 100 advanced generation breeding lines are tested in 
multi-environment trials each year in a typical small-sized 
line breeding program, it would be most likely feasible to 
genotype all of them in order to build and update a training 
population. Assuming further that the selection population 
of young breeding lines in such a program comprises around 
1000 individuals from 50 crosses, the genotyping costs in 
the mid-parent or family bulk methods would amount 10% or 
15% of the mentioned full genomic breeding strategy. Given 
the constraint of a fixed budget in a small-scale breeding 
program, these additional expenses might, e.g., be readily 
covered by reallocating phenotyping resources used for grain 
yield screening in a few dozen field plots. The proposed 
strategies can thus be regarded as alternatives to the men-
tioned full genomic or pedigree prediction approaches, with 
some conceptional benefits to the latter, like the possibility 
to clarify relationship with lines coming from other breed-
ing programs, a more elaborate diversity management and 
consequently the genomic planning of crosses.



1585Theoretical and Applied Genetics (2021) 134:1575–1586	

1 3

Supplementary Information  The online version contains supplemen-
tary material available at https​://doi.org/10.1007/s0012​2-021-03794​-2.

Acknowledgements  We like to thank Maria Bürstmayr and her team 
for the tremendous work when extracting the DNA of several hundred 
wheat lines each year. We further like Andrzej Kilian from Diversity 
Arrays Technology Pty Ltd for providing detailed information of the 
DArTseq genotyping-by-sequencing pipeline. We also like to thank 
Melanie Stadlmeier for critically proof-reading the manuscript as well 
as Christian Wagner and Barbara Steiner for many fruitful discussions 
when conducting this study. We finally like to thank the two anonymous 
reviewers for their valuable comments and suggestions for improving 
the manuscript.

Author contribution statement  SM wrote the manuscript and analyzed 
the data. CA supported in the statistical analysis. FL and HB initiated 
and guided through the study. All authors read and approved the final 
manuscript.

Funding  Open access funding provided by University of Natural 
Resources and Life Sciences Vienna (BOKU). This research was 
funded by the “Beyond Europe” FFG project CAWINT (855737) and 
the “Frontrunner” FFG project TRIBIO (35412407). 

Compliance with ethical standards 

Conflict of interest  The authors declare no conflict of interest.

Ethical standards  The authors declare that the experiments comply 
with the current laws of Austria.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Abed A, Pérez-Rodríguez P, Crossa J, Belzile F (2018) When less can 
be better: how can we make genomic selection more cost-effective 
and accurate in barley? Theor Appl Genet 131:1873–1890. https​
://doi.org/10.1007/s0012​2-018-3120-8

Akdemir D, Beavis W, Fritsche-Neto R et al (2019) Multi-objective 
optimized genomic breeding strategies for sustainable food 
improvement. Heredity (Edinb) 122:672–683. https​://doi.
org/10.1038/s4143​7-018-0147-1

Alexandre PA, Porto-Neto LR, Karaman E et al (2019) Pooled geno-
typing strategies for the rapid construction of genomic reference 
populations1. J Anim Sci 97:4761–4769. https​://doi.org/10.1093/
jas/skz34​4

Alexandre PA, Reverter A, Lehnert SA et al (2020) In silico validation 
of pooled genotyping strategies for genomic evaluation in Angus 
cattle. J Anim Sci 98:skaa170. https​://doi.org/10.1093/jas/skaa1​70

Amadeu RR, Cellon C, Olmstead JW et al (2016) AGHmatrix: R pack-
age to construct relationship matrices for autotetraploid and dip-
loid species: a Blueberry example. Plant Genome 9:1–10. https​://
doi.org/10.3835/plant​genom​e2016​.01.0009

Ashraf B, Edriss V, Akdemir D et al (2016) Genomic prediction using 
phenotypes from pedigreed lines with no marker data. Crop Sci 
56:957–964. https​://doi.org/10.2135/crops​ci201​5.02.0111

Baller J, Kachman SD, Kuehn L, Spangler ML (2020) Genomic predic-
tion using pooled data in a single-step GBLUP framework. J Anim 
Sci 98:1–12. https​://doi.org/10.1093/jas/skaa1​84

Beil CT, Anderson VA, Morgounov A, Haley SD (2019) Genomic 
selection for winter survival ability among a diverse collection of 
facultative and winter wheat genotypes. Mol Breed. https​://doi.
org/10.1007/s1103​2-018-0925-8

Bell AM, Henshall JM, Porto-Neto LR et al (2017) Estimating the 
genetic merit of sires by using pooled DNA from progeny of unde-
termined pedigree. Genet Sel Evol 49:28. https​://doi.org/10.1186/
s1271​1-017-0303-8

Ben-Sadoun S, Auzanneau RRJ, Rolland FXOB, Ravel EHC (2020) 
Economical optimization of a breeding scheme by selective phe-
notyping of the calibration set in a multi-trait context : applica-
tion to bread making quality. Theor Appl Genet 133:2197–2212. 
https​://doi.org/10.1007/s0012​2-020-03590​-4

Bernardo R (2014) Genomewide selection of parental inbreds: 
classes of loci and virtual biparental populations. Crop Sci 
54:2586–2595. https​://doi.org/10.2135/crops​ci201​4.01.0088

Borrenpohl D, Huang M, Olson E, Sneller C (2020) The value 
of early-stage phenotyping for wheat breeding in the age of 
genomic selection. Theor Appl Genet 133:2499–2520. https​://
doi.org/10.1007/s0012​2-020-03613​-0

Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL map-
ping in experimental crosses. Bioinformatics 19:889–890. https​
://doi.org/10.1093/bioin​forma​tics/btg11​2

Burgueño J, Cadena A, Crossa J (2000) User ’ S Guide for spatial 
analysis of field variety trials using Asreml. CIMMYT, Mexico

Christensen O, Lund MS (2010) Genomic relationship matrix when 
some animals are not genotyped. Genet Sel Evol 42:1–8. https​
://doi.org/10.1186/1297-9686-42-2

Christensen O, Madsen P, Nielsen B et al (2012) Single-step methods 
for genomic evaluation in pigs. Animal 6:1565–1571. https​://
doi.org/10.1017/S1751​73111​20007​42

Covarrubias-Pazaran G (2016) Genome-Assisted prediction of quan-
titative traits using the R package sommer. PLoS ONE 11:1–15. 
https​://doi.org/10.1371/journ​al.pone.01567​44

Crossa J, Pérez-Rodríguez P, Cuevas J et al (2017) Genomic selec-
tion in plant breeding: methods, models, and perspectives. 
Trends Plant Sci 22:961–975. https​://doi.org/10.1016/j.tplan​
ts.2017.08.011

Daetwyler HD, Villanueva B, Bijma P, Woolliams JA (2007) 
Inbreeding in genome-wide selection. J Anim Breed Genet 
124:369–376

Diversity Arrays Technology Pty Ltd (2020a) DArT P/L
Diversity Arrays Technology Pty Ltd (2020b) A consensus map of 

wheat V 4.0. https​://www.diver​sitya​rrays​.com/techn​ology​-and-
resou​rces/genet​ic-maps/. Accessed 24 Feb 2021

e Sousa MB, Galli G, Lyra DH et al (2019) Increasing accuracy and 
reducing costs of genomic prediction by marker selection. Euphyt-
ica 215:18. https​://doi.org/10.1007/s1068​1-019-2339-z

Endelman JB, Schmitz Carley CA, Douches DS et al (2017) Pedigree 
reconstruction with genome-wide markers in potato. Am J Potato 
Res 94:184–190. https​://doi.org/10.1007/s1223​0-016-9556-y

Gorjanc G, Dumasy J-F, Gonen S et al (2017) Potential of low-cover-
age genotyping-by-sequencing and imputation for cost-effective 
genomic selection in biparental segregating populations. Crop Sci 
57:1404–1420. https​://doi.org/10.2135/crops​ci201​6.08.0675

https://doi.org/10.1007/s00122-021-03794-2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00122-018-3120-8
https://doi.org/10.1007/s00122-018-3120-8
https://doi.org/10.1038/s41437-018-0147-1
https://doi.org/10.1038/s41437-018-0147-1
https://doi.org/10.1093/jas/skz344
https://doi.org/10.1093/jas/skz344
https://doi.org/10.1093/jas/skaa170
https://doi.org/10.3835/plantgenome2016.01.0009
https://doi.org/10.3835/plantgenome2016.01.0009
https://doi.org/10.2135/cropsci2015.02.0111
https://doi.org/10.1093/jas/skaa184
https://doi.org/10.1007/s11032-018-0925-8
https://doi.org/10.1007/s11032-018-0925-8
https://doi.org/10.1186/s12711-017-0303-8
https://doi.org/10.1186/s12711-017-0303-8
https://doi.org/10.1007/s00122-020-03590-4
https://doi.org/10.2135/cropsci2014.01.0088
https://doi.org/10.1007/s00122-020-03613-0
https://doi.org/10.1007/s00122-020-03613-0
https://doi.org/10.1093/bioinformatics/btg112
https://doi.org/10.1093/bioinformatics/btg112
https://doi.org/10.1186/1297-9686-42-2
https://doi.org/10.1186/1297-9686-42-2
https://doi.org/10.1017/S1751731112000742
https://doi.org/10.1017/S1751731112000742
https://doi.org/10.1371/journal.pone.0156744
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1016/j.tplants.2017.08.011
https://www.diversityarrays.com/technology-and-resources/genetic-maps/
https://www.diversityarrays.com/technology-and-resources/genetic-maps/
https://doi.org/10.1007/s10681-019-2339-z
https://doi.org/10.1007/s12230-016-9556-y
https://doi.org/10.2135/cropsci2016.08.0675


1586	 Theoretical and Applied Genetics (2021) 134:1575–1586

1 3

Haikka H, Knürr T, Manninen O et al (2020a) Genomic prediction of 
grain yield in commercial Finnish oat (Avena sativa) and barley 
(Hordeum vulgare) breeding programmes. Plant Breed 139:550–
561. https​://doi.org/10.1111/pbr.12807​

Haikka H, Manninen O, Hautsalo J et al (2020b) Genome-wide asso-
ciation study and genomic prediction for Fusarium graminearum 
resistance traits in nordic oat (Avena sativa L.). Agronomy 10:174. 
https​://doi.org/10.3390/agron​omy10​02017​4

Hayes BJ, Panozzo J, Walker CK et al (2017) Accelerating wheat 
breeding for end-use quality with multi-trait genomic predictions 
incorporating near infrared and nuclear magnetic resonance-
derived phenotypes. Theor Appl Genet 130:2505–2519. https​://
doi.org/10.1007/s0012​2-017-2972-7

Henderson C (1976) A simple method for computing the inverse of 
a numerator relationship matrix used in prediction of breeding 
values. Biometrics 32:69–83

Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selec-
tion in plant breeding: a comparison of models. Crop Sci 52:146. 
https​://doi.org/10.2135/crops​ci201​1.09.0297

Imai A, Kuniga T, Yoshioka T et al (2019) Single-step genomic pre-
diction of fruit-quality traits using phenotypic records of non-
genotyped relatives in citrus. PLoS ONE 14:1–14. https​://doi.
org/10.1371/journ​al.pone.02218​80

Juliana P, Poland J, Huerta-Espino J et al (2019) Improving grain 
yield, stress resilience and quality of bread wheat using large-
scale genomics. Nat Genet 51:1530–1539. https​://doi.org/10.1038/
s4158​8-019-0496-6

Juliana P, Singh RP, Braun H-J et al (2020) Genomic selection for 
grain yield in the CIMMYT wheat breeding program—status and 
perspectives. Front Plant Sci 11:564183. https​://doi.org/10.3389/
fpls.2020.56418​3

Kilian A, Wenzl P, Huttner E et al (2012) Diversity arrays technol-
ogy: a generic genome profiling technology on open platforms. 
In: Pompanon F, Bonin A (eds) Data production and analysis in 
population genomics: methods and protocols. Humana Press, 
Totowa, pp 67–89

Legarra A, Aguilar I, Misztal I (2009) A relationship matrix including 
full pedigree and genomic information. J Dairy Sci 92:4656–4663. 
https​://doi.org/10.3168/jds.2009-2061

Michel S, Löschenberger F, Hellinger J et al (2019) Improving and 
maintaining winter hardiness and frost tolerance in bread wheat 
by genomic selection. Front Plant Sci 10:1–11. https​://doi.
org/10.3389/fpls.2019.01195​

Michel S, Löschenberger F, Sparry E et al (2020a) Mitigating the 
impact of selective phenotyping in training populations on the 
prediction ability by multi-trait pedigree and genomic selection 
models. Plant Breed 139:1067–1075. https​://doi.org/10.1111/
pbr.12862​

Michel S, Löschenberger F, Sparry E et al (2020b) Multi-year dynam-
ics of single-step genomic prediction in an applied wheat breed-
ing program. Agronomy 10:1591. https​://doi.org/10.3390/agron​
omy10​10159​1

Misztal I, Aggrey SE, Muir WM (2013) Experiences with a single-
step genome evaluation. Poult Sci 92:2530–2534. https​://doi.
org/10.3382/ps.2012-02739​

Mohammadi M, Tiede T, Smith KP (2015) Popvar: a genome-wide 
procedure for predicting genetic variance and correlated response 

in biparental breeding populations. Crop Sci 55:2068–2077. https​
://doi.org/10.2135/crops​ci201​5.01.0030

Munoz PR, Resende MFR, Huber DA et al (2014) Genomic relation-
ship matrix for correcting pedigree errors in breeding populations: 
impact on genetic parameters and genomic selection accuracy. 
Crop Sci 54:1115–1123. https​://doi.org/10.2135/crops​ci201​
2.12.0673

Neyhart JL, Lorenz AJ, Smith KP (2019) Multi-trait improvement 
by predicting genetic correlations in breeding crosses. G3 
Genes Genomes Genet 9:3153–3165. https​://doi.org/10.1534/
g3.119.40040​6

Osthushenrich T, Frisch M, Herzog E (2017) Genomic selection of 
crossing partners on basis of the expected mean and variance 
of their derived lines. PLoS ONE 12:e0188839. https​://doi.
org/10.1371/journ​al.pone.01888​39

Pszczola M, Veerkamp RF, de Haas Y et al (2013) Effect of predic-
tor traits on accuracy of genomic breeding values for feed intake 
based on a limited cow reference population. Animal 7:1759–
1768. https​://doi.org/10.1017/S1751​73111​30015​0X

R Core Team (2020) R: a language and environment for statistical 
computing

Robertsen C, Hjortshøj R, Janss L (2019) Genomic selection in cereal 
breeding. Agronomy 9:95. https​://doi.org/10.3390/agron​omy90​
20095​

Saccomanno B, Wallace M, O’Sullivan DM, Cockram J (2020) Use 
of genetic markers for the detection of off-types for DUS pheno-
typic traits in the inbreeding crop, barley. Mol Breed. https​://doi.
org/10.1007/s1103​2-019-1088-y

Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) 
Ribosomal DNA spacer-length polymorphisms in barley: Mende-
lian inheritance, chromosomal location, and population dynam-
ics. Proc Natl Acad Sci 81:8014–8018. https​://doi.org/10.1073/
pnas.81.24.8014

Schmidt P, Hartung J, Rath J, Piepho HP (2019) Estimating broad-
sense heritability with unbalanced data from agricultural cultivar 
trials. Crop Sci 59:525–536. https​://doi.org/10.2135/crops​ci201​
8.06.0376

Tsai H, Cericola F, Edriss V et al (2020) Use of multiple traits genomic 
prediction, genotype by environment interactions and spatial effect 
to improve prediction accuracy in yield data. PLoS ONE. https​://
doi.org/10.1371/journ​al.pone.02326​65

VanRaden PM (2008) Efficient methods to compute genomic pre-
dictions. J Dairy Sci 91:4414–4423. https​://doi.org/10.3168/
jds.2007-0980

Verges VL, Lyerly J, Dong Y, Van Sanford DA (2020) Training popula-
tion design with the use of regional Fusarium head blight nurser-
ies to predict independent breeding lines for FHB traits. Front 
Plant Sci 11:1083. https​://doi.org/10.3389/fpls.2020.01083​

Zhao Y, Zeng J, Fernando R, Reif JC (2013) Genomic prediction of 
hybrid wheat performance. Crop Sci 53:802–810. https​://doi.
org/10.2135/crops​ci201​2.08.0463

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1111/pbr.12807
https://doi.org/10.3390/agronomy10020174
https://doi.org/10.1007/s00122-017-2972-7
https://doi.org/10.1007/s00122-017-2972-7
https://doi.org/10.2135/cropsci2011.09.0297
https://doi.org/10.1371/journal.pone.0221880
https://doi.org/10.1371/journal.pone.0221880
https://doi.org/10.1038/s41588-019-0496-6
https://doi.org/10.1038/s41588-019-0496-6
https://doi.org/10.3389/fpls.2020.564183
https://doi.org/10.3389/fpls.2020.564183
https://doi.org/10.3168/jds.2009-2061
https://doi.org/10.3389/fpls.2019.01195
https://doi.org/10.3389/fpls.2019.01195
https://doi.org/10.1111/pbr.12862
https://doi.org/10.1111/pbr.12862
https://doi.org/10.3390/agronomy10101591
https://doi.org/10.3390/agronomy10101591
https://doi.org/10.3382/ps.2012-02739
https://doi.org/10.3382/ps.2012-02739
https://doi.org/10.2135/cropsci2015.01.0030
https://doi.org/10.2135/cropsci2015.01.0030
https://doi.org/10.2135/cropsci2012.12.0673
https://doi.org/10.2135/cropsci2012.12.0673
https://doi.org/10.1534/g3.119.400406
https://doi.org/10.1534/g3.119.400406
https://doi.org/10.1371/journal.pone.0188839
https://doi.org/10.1371/journal.pone.0188839
https://doi.org/10.1017/S175173111300150X
https://doi.org/10.3390/agronomy9020095
https://doi.org/10.3390/agronomy9020095
https://doi.org/10.1007/s11032-019-1088-y
https://doi.org/10.1007/s11032-019-1088-y
https://doi.org/10.1073/pnas.81.24.8014
https://doi.org/10.1073/pnas.81.24.8014
https://doi.org/10.2135/cropsci2018.06.0376
https://doi.org/10.2135/cropsci2018.06.0376
https://doi.org/10.1371/journal.pone.0232665
https://doi.org/10.1371/journal.pone.0232665
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3389/fpls.2020.01083
https://doi.org/10.2135/cropsci2012.08.0463
https://doi.org/10.2135/cropsci2012.08.0463

	Genotyping crossing parents and family bulks can facilitate cost-efficient genomic prediction strategies in small-scale line breeding programs
	Abstract
	Key message 
	Abstract 

	Introduction
	Materials and methods
	Plant material
	Statistical analysis of the phenotypic data
	Single-trait and trait-assisted prediction models
	Simulation and selection among virtual populations

	Results
	Discussion
	Conclusions
	Acknowledgements 
	References




